Select Publications
Journal articles
2024, 'The biological and preformed carbon pumps in perpetually slower and warmer oceans', Biogeosciences, 21, pp. 3373 - 3400, http://dx.doi.org/10.5194/bg-21-3373-2024
,2024, 'Atmospheric pCO
2024, 'Biogeochemical Fluxes of Nickel in the Global Oceans Inferred From a Diagnostic Model', Global Biogeochemical Cycles, 38, http://dx.doi.org/10.1029/2023GB008018
,2024, 'Deoxygenation and Its Drivers Analyzed in Steady State for Perpetually Slower and Warmer Oceans', Journal of Geophysical Research: Oceans, 129, http://dx.doi.org/10.1029/2024jc021043
,2023, 'Optimal parameters for the ocean's nutrient, carbon, and oxygen cycles compensate for circulation biases but replumb the biological pump', Biogeosciences, 20, pp. 2985 - 3009, http://dx.doi.org/10.5194/bg-20-2985-2023
,2022, 'The biogeochemical balance of oceanic nickel cycling', Nature Geoscience, 15, pp. 906 - 912, http://dx.doi.org/10.1038/s41561-022-01045-7
,2022, 'AIBECS.jl: A tool for exploring global marine biogeochemical cycles.', Journal of Open Source Software, 7, pp. 3814 - 3814, http://dx.doi.org/10.21105/joss.03814
,2022, 'GNOM v1.0: an optimized steady-state model of the modern marine neodymium cycle', Geoscientific Model Development, 15, pp. 4625 - 4656, http://dx.doi.org/10.5194/gmd-15-4625-2022
,2021, 'A New Metric of the Biological Carbon Pump: Number of Pump Passages and Its Control on Atmospheric pCO
2019, 'Diatom Physiology Controls Silicic Acid Leakage in Response to Iron Fertilization', Global Biogeochemical Cycles, 33, pp. 1631 - 1653, http://dx.doi.org/10.1029/2019GB006460
,2018, 'The number of past and future regenerations of iron in the ocean and its intrinsic fertilization efficiency', Biogeosciences, 15, pp. 7177 - 7203, http://dx.doi.org/10.5194/bg-15-7177-2018
,2018, 'Authors' Response to Comments by Referee #2 for bg-2018-379', , http://dx.doi.org/10.5194/bg-2018-379-ac2
,2018, 'Authors' Response to Comments by Referee #3 for bg-2018-379', , http://dx.doi.org/10.5194/bg-2018-379-ac3
,2018, 'Authors' Response to Comments by Referee #1 for bg-2018-379', , http://dx.doi.org/10.5194/bg-2018-379-ac1
,2018, 'Iron fertilization efficiency and the number of past and future regenerations of iron in the ocean', , http://dx.doi.org/10.5194/bg-2018-379
,2018, 'The ocean's global iron, phosphorus and silicon cycles: Inverse modelling and novel diagnostics', Bulletin of the Australian Mathematical Society, 97, pp. 518 - 519, http://dx.doi.org/10.1017/S0004972718000060
,2017, 'Inverse-model estimates of the ocean’s coupled phosphorus, silicon, and iron cycles', Biogeosciences, 14, pp. 4125 - 4159, http://dx.doi.org/10.5194/bg-14-4125-2017
,2017, 'Response to comment #2', , http://dx.doi.org/10.5194/bg-2017-122-ac2
,2017, 'Response to comment', , http://dx.doi.org/10.5194/bg-2017-122-ac1
,2017, 'Inverse-model estimates of the ocean's coupled phosphorus, silicon, and iron cycles', , http://dx.doi.org/10.5194/bg-2017-122
,2016, 'The age of iron and iron source attribution in the ocean', Global Biogeochemical Cycles, 30, pp. 1454 - 1474, http://dx.doi.org/10.1002/2016GB005418
,2016, 'The plumbing of the global biological pump: Efficiency control through leaks, pathways, and time scales', Journal of Geophysical Research: Oceans, 121, pp. 6367 - 6388, http://dx.doi.org/10.1002/2016JC011821
,