Select Publications
By Dr Chen Jia
Book Chapters
2022, 'Ionic Liquids for Electrochemical CO2 Reduction', in Encyclopedia of Ionic Liquids, Springer Nature Singapore, pp. 1 - 22, http://dx.doi.org/10.1007/978-981-10-6739-6_148-1
,2022, 'Ionic Liquids for Electrochemical CO2 Reduction', in Encyclopedia of Ionic Liquids, Springer Nature Singapore, pp. 676 - 696, http://dx.doi.org/10.1007/978-981-33-4221-7_148
,Journal articles
2024, 'Tunable Ag-Ox coordination for industrial-level carbon-negative CO
2024, 'Molecule Doping of Atomically Dispersed Cu–Au Alloy for Enhancing Electroreduction of CO to C
2024, 'Challenges and Opportunities for Single-Atom Electrocatalysts: From Lab-Scale Research to Potential Industry-Level Applications', Advanced Materials, 36, pp. e2404659, http://dx.doi.org/10.1002/adma.202404659
,2024, 'Fast and Sensitive Detection of Ammonia from Electrochemical Nitrogen Reduction Reactions by 1H NMR with Radiation Damping', Small Methods, 8, http://dx.doi.org/10.1002/smtd.202301373
,2024, 'Suppressed Manganese Oxides Shuttling in Acidic Electrolytes Extends Shelf-Life of Electrolytic Proton Batteries', Advanced Functional Materials, 34, http://dx.doi.org/10.1002/adfm.202315706
,2024, 'Defect-balanced active and stable Co
2024, 'Deciphering Mesopore-Augmented CO
2023, 'Highly Ordered Hierarchical Porous Single-Atom Fe Catalyst with Promoted Mass Transfer for Efficient Electroreduction of CO
2023, 'Operando deconvolution of the degradation mechanisms of iron-nitrogen-carbon catalysts in proton exchange membrane fuel cells', Energy and Environmental Science, 16, pp. 3792 - 3802, http://dx.doi.org/10.1039/d3ee01166f
,2023, 'Cooperative Boron and Vanadium Doping of Nickel Phosphides for Hydrogen Evolution in Alkaline and Anion Exchange Membrane Water/Seawater Electrolyzers', Small, 19, http://dx.doi.org/10.1002/smll.202208076
,2023, 'From bulk metals to single-atoms: design of efficient catalysts for the electroreduction of CO
2023, 'Atomically Dispersed Cu-Au Alloy for Efficient Electrocatalytic Reduction of Carbon Monoxide to Acetate', ACS Catalysis, 13, pp. 5689 - 5696, http://dx.doi.org/10.1021/acscatal.2c06145
,2023, 'Co-insertion of Water with Protons into Organic Electrodes Enables High-Rate and High-Capacity Proton Batteries', Small Structures, 4, http://dx.doi.org/10.1002/sstr.202200257
,2022, 'Molecular Crowding Electrolytes for Stable Proton Batteries', Small, 18, http://dx.doi.org/10.1002/smll.202202992
,2022, 'Heterostructured V-Doped Ni
2022, 'The porosity engineering for single-atom metal-nitrogen-carbon catalysts for the electroreduction of CO
2022, 'Single atom-based catalysts for electrochemical CO
2022, 'Electronic Regulation of Nickel Single Atoms by Confined Nickel Nanoparticles for Energy-Efficient CO
2022, 'Electronic Regulation of Nickel Single Atoms by Confined Nickel Nanoparticles for Energy‐Efficient CO2 Electroreduction', Angewandte Chemie, 134, http://dx.doi.org/10.1002/ange.202203335
,2022, 'Hydrogen-Bond Disrupting Electrolytes for Fast and Stable Proton Batteries', Small, 18, http://dx.doi.org/10.1002/smll.202201449
,2022, 'Key factors for designing single-atom metal-nitrogen-carbon catalysts for electrochemical CO
2021, 'Nitrogen Vacancy Induced Coordinative Reconstruction of Single-Atom Ni Catalyst for Efficient Electrochemical CO
2021, 'Sulfur-Dopant-Promoted Electroreduction of CO
2021, 'Sulfur‐Dopant‐Promoted Electroreduction of CO2 over Coordinatively Unsaturated Ni‐N2 Moieties', Angewandte Chemie, 133, pp. 23530 - 23536, http://dx.doi.org/10.1002/ange.202109373
,2021, 'Vanadium-induced fragmentation of crystalline CoFe hydr(oxy)oxide electrocatalysts for enhanced oxygen evolution reaction', International Journal of Hydrogen Energy, 46, pp. 35230 - 35238, http://dx.doi.org/10.1016/j.ijhydene.2021.08.080
,2021, '“Water-in-Sugar” Electrolytes Enable Ultrafast and Stable Electrochemical Naked Proton Storage', Small, 17, pp. e2102375, http://dx.doi.org/10.1002/smll.202102375
,2021, 'In-plane sulfur vacancy of MoS
2020, 'Surface Reconstruction of Ultrathin Palladium Nanosheets during Electrocatalytic CO
2020, 'Surface Reconstruction of Ultrathin Palladium Nanosheets during Electrocatalytic CO2 Reduction', Angewandte Chemie, 132, pp. 21677 - 21682, http://dx.doi.org/10.1002/ange.202009616
,2020, 'Confinement of Ionic Liquids at Single-Ni-Sites Boost Electroreduction of CO
2020, 'Cobalt oxide micro flowers derived from hydrothermal synthesised cobalt sulphide pre-catalyst for enhanced water oxidation', Electrochimica Acta, 355, http://dx.doi.org/10.1016/j.electacta.2020.136802
,2020, 'Vitamin B
2020, 'Defective Indium/Indium Oxide Heterostructures for Highly Selective Carbon Dioxide Electrocatalysis', Inorganic Chemistry, 59, pp. 12437 - 12444, http://dx.doi.org/10.1021/acs.inorgchem.0c01544
,2020, '(N, B) Dual Heteroatom-Doped Hierarchical Porous Carbon Framework for Efficient Electroreduction of Carbon Dioxide', ACS Sustainable Chemistry and Engineering, 8, pp. 6003 - 6010, http://dx.doi.org/10.1021/acssuschemeng.0c00739
,2020, 'Ruthenium Complexes in Homogeneous and Heterogeneous Catalysis for Electroreduction of CO
2019, 'Carbon-based catalysts for electrochemical CO2 reduction', Sustainable Energy & Fuels, http://dx.doi.org/10.1039/c9se00527g
,2019, 'Isolated Diatomic Ni-Fe Metal–Nitrogen Sites for Synergistic Electroreduction of CO
2019, 'Isolated Diatomic Ni‐Fe Metal–Nitrogen Sites for Synergistic Electroreduction of CO2', Angewandte Chemie, 131, pp. 7046 - 7050, http://dx.doi.org/10.1002/ange.201901575
,2019, 'Nanostructured amalgams with tuneable silver-mercury bonding sites for selective electroreduction of carbon dioxide into formate and carbon monoxide', Journal of Materials Chemistry A, 7, pp. 15907 - 15912, http://dx.doi.org/10.1039/c9ta03611c
,2018, 'Design of Electrocatalysts and Electrochemical Cells for Carbon Dioxide Reduction Reactions', Advanced Materials Technologies, 3, http://dx.doi.org/10.1002/admt.201700377
,2016, 'Enhanced Sensitivity for Hydrogen Peroxide Detection: Polydiacetylene Vesicles with Phenylboronic Acid Head Group', Journal of Fluorescence, 26, pp. 121 - 127, http://dx.doi.org/10.1007/s10895-015-1691-1
,2014, 'Hybrid polydiacetylene/magnetite nanoparticles: Sensing for sodium cetyltrimethylammonium bromide and streptavidin', Journal of Applied Polymer Science, 131, http://dx.doi.org/10.1002/app.40634
,2014, 'Polydiacetylene vesicles for hydrogen peroxide detection', Colloids and Surfaces A: Physicochemical and Engineering Aspects, 443, pp. 488 - 491, http://dx.doi.org/10.1016/j.colsurfa.2013.11.029
,2013, 'Preparation of mesoporous alumina and its catalytic performance in ethanol dehydration', Shiyou Huagong/Petrochemical Technology, 42, pp. 489 - 494
,2013, 'Numerical simulation of fixed-bed reactor for ethanol dehydration', Shiyou Huagong/Petrochemical Technology, 42, pp. 53 - 58
,2013, 'Research on stop-effect on the catalytic dehydration of ethanol over HZSM-5', Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 41, pp. 1495 - 1501
,Preprints
2021, Electronic regulation of Ni single atom by confined Ni nanoparticles for fast and energy-efficient CO2 electroreduction, http://dx.doi.org/10.21203/rs.3.rs-850267/v2
,2021, Electronic regulation of Ni single atom by confined Ni nanoparticles for fast and energy-efficient CO2 electroreduction, http://dx.doi.org/10.21203/rs.3.rs-850267/v1
,