Select Publications

Journal articles

Chen H; Huang Q; Yang K; Chen S; Feng H; Jia C; Li Q; Zhao C; Duan J, 2024, 'Tunable Ag-Ox coordination for industrial-level carbon-negative CO2 electrolysis', Nano Energy, 131, http://dx.doi.org/10.1016/j.nanoen.2024.110265

Jia C; Sun Q; Liu R; Mao G; Maschmeyer T; Gooding JJ; Zhang T; Dai L; Zhao C, 2024, 'Challenges and Opportunities for Single-Atom Electrocatalysts: From Lab-Scale Research to Potential Industry-Level Applications', Advanced Materials, 36, pp. e2404659, http://dx.doi.org/10.1002/adma.202404659

Assafiri A; Jia C; Thomas DS; Hibbert DB; Zhao C, 2024, 'Fast and Sensitive Detection of Ammonia from Electrochemical Nitrogen Reduction Reactions by 1H NMR with Radiation Damping', Small Methods, 8, http://dx.doi.org/10.1002/smtd.202301373

Wu S; Guo H; Su Z; Jia C; Zhang X; Wang S; Zhao T; Meyer Q; Zhao C, 2024, 'Suppressed Manganese Oxides Shuttling in Acidic Electrolytes Extends Shelf-Life of Electrolytic Proton Batteries', Advanced Functional Materials, 34, http://dx.doi.org/10.1002/adfm.202315706

Rong C; Wang S; Shen X; Jia C; Sun Q; Zhang Q; Zhao C, 2024, 'Defect-balanced active and stable Co3O4−x for proton exchange membrane water electrolysis at ampere-level current density', Energy and Environmental Science, 17, pp. 4196 - 4204, http://dx.doi.org/10.1039/d4ee00977k

Zhao Y; Shi Z; Li F; Jia C; Sun Q; Su Z; Zhao C, 2024, 'Deciphering Mesopore-Augmented CO2 Electroreduction over Atomically Dispersed Fe-N-doped Carbon Catalysts', ACS Catalysis, 14, pp. 3926 - 3932, http://dx.doi.org/10.1021/acscatal.3c05144

Sun Q; Tan X; Jia C; Rong C; Wang S; Han C; Xiao Y; Qi H; Smith SC; Zhao C, 2024, 'Molecule Doping of Atomically Dispersed Cu–Au Alloy for Enhancing Electroreduction of CO to C2+ Products', Advanced Functional Materials, http://dx.doi.org/10.1002/adfm.202406281

Jia C; Zhao Y; Song S; Sun Q; Meyer Q; Liu S; Shen Y; Zhao C, 2023, 'Highly Ordered Hierarchical Porous Single-Atom Fe Catalyst with Promoted Mass Transfer for Efficient Electroreduction of CO2', Advanced Energy Materials, 13, http://dx.doi.org/10.1002/aenm.202302007

Liu S; Meyer Q; Jia C; Wang S; Rong C; Nie Y; Zhao C, 2023, 'Operando deconvolution of the degradation mechanisms of iron-nitrogen-carbon catalysts in proton exchange membrane fuel cells', Energy and Environmental Science, 16, pp. 3792 - 3802, http://dx.doi.org/10.1039/d3ee01166f

Zhao T; Wang S; Jia C; Rong C; Su Z; Dastafkan K; Zhang Q; Zhao C, 2023, 'Cooperative Boron and Vanadium Doping of Nickel Phosphides for Hydrogen Evolution in Alkaline and Anion Exchange Membrane Water/Seawater Electrolyzers', Small, 19, http://dx.doi.org/10.1002/smll.202208076

Jia C; Sun Q; Zhao C, 2023, 'From bulk metals to single-atoms: design of efficient catalysts for the electroreduction of CO2', Chemical Communications, 59, pp. 7731 - 7742, http://dx.doi.org/10.1039/d3cc01581e

Sun Q; Zhao Y; Tan X; Jia C; Su Z; Meyer Q; Ahmed MI; Zhao C, 2023, 'Atomically Dispersed Cu-Au Alloy for Efficient Electrocatalytic Reduction of Carbon Monoxide to Acetate', ACS Catalysis, 13, pp. 5689 - 5696, http://dx.doi.org/10.1021/acscatal.2c06145

Su Z; Tang J; Chen J; Guo H; Wu S; Yin S; Zhao T; Jia C; Meyer Q; Rawal A; Ho J; Fang Y; Zhao C, 2023, 'Co-insertion of Water with Protons into Organic Electrodes Enables High-Rate and High-Capacity Proton Batteries', Small Structures, 4, http://dx.doi.org/10.1002/sstr.202200257

Wu S; Chen J; Su Z; Guo H; Zhao T; Jia C; Stansby J; Tang J; Rawal A; Fang Y; Ho J; Zhao C, 2022, 'Molecular Crowding Electrolytes for Stable Proton Batteries', Small, 18, http://dx.doi.org/10.1002/smll.202202992

Zhao T; Wang S; Li Y; Jia C; Su Z; Hao D; Ni BJ; Zhang Q; Zhao C, 2022, 'Heterostructured V-Doped Ni2P/Ni12P5 Electrocatalysts for Hydrogen Evolution in Anion Exchange Membrane Water Electrolyzers', Small, 18, http://dx.doi.org/10.1002/smll.202204758

Jia C; Shi Z; Zhao C, 2022, 'The porosity engineering for single-atom metal-nitrogen-carbon catalysts for the electroreduction of CO2', Current Opinion in Green and Sustainable Chemistry, 37, http://dx.doi.org/10.1016/j.cogsc.2022.100651

Sun Q; Jia C; Zhao Y; Zhao C, 2022, 'Single atom-based catalysts for electrochemical CO2 reduction', Chinese Journal of Catalysis, 43, pp. 1547 - 1597, http://dx.doi.org/10.1016/S1872-2067(21)64000-7

Ren W; Tan X; Jia C; Krammer A; Sun Q; Qu J; Smith SC; Schueler A; Hu X; Zhao C, 2022, 'Electronic Regulation of Nickel Single Atoms by Confined Nickel Nanoparticles for Energy-Efficient CO2 Electroreduction', Angewandte Chemie - International Edition, 61, http://dx.doi.org/10.1002/anie.202203335

Ren W; Tan X; Jia C; Krammer A; Sun Q; Qu J; Smith SC; Schueler A; Hu X; Zhao C, 2022, 'Electronic Regulation of Nickel Single Atoms by Confined Nickel Nanoparticles for Energy‐Efficient CO2 Electroreduction', Angewandte Chemie, 134, http://dx.doi.org/10.1002/ange.202203335

Su Z; Chen J; Stansby J; Jia C; Zhao T; Tang J; Fang Y; Rawal A; Ho J; Zhao C, 2022, 'Hydrogen-Bond Disrupting Electrolytes for Fast and Stable Proton Batteries', Small, 18, http://dx.doi.org/10.1002/smll.202201449

Jia C; Dastafkan K; Zhao C, 2022, 'Key factors for designing single-atom metal-nitrogen-carbon catalysts for electrochemical CO2 reduction', Current Opinion in Electrochemistry, 31, http://dx.doi.org/10.1016/j.coelec.2021.100854

Jia C; Li S; Zhao Y; Hocking RK; Ren W; Chen X; Su Z; Yang W; Wang Y; Zheng S; Pan F; Zhao C, 2021, 'Nitrogen Vacancy Induced Coordinative Reconstruction of Single-Atom Ni Catalyst for Efficient Electrochemical CO2 Reduction', Advanced Functional Materials, 31, http://dx.doi.org/10.1002/adfm.202107072

Jia C; Tan X; Zhao Y; Ren W; Li Y; Su Z; Smith SC; Zhao C, 2021, 'Sulfur-Dopant-Promoted Electroreduction of CO2 over Coordinatively Unsaturated Ni-N2 Moieties', Angewandte Chemie - International Edition, 60, pp. 23342 - 23348, http://dx.doi.org/10.1002/anie.202109373

Jia C; Tan X; Zhao Y; Ren W; Li Y; Su Z; Smith SC; Zhao C, 2021, 'Sulfur‐Dopant‐Promoted Electroreduction of CO2 over Coordinatively Unsaturated Ni‐N2 Moieties', Angewandte Chemie, 133, pp. 23530 - 23536, http://dx.doi.org/10.1002/ange.202109373

Adamson W; Jia C; Li Y; Zhao C, 2021, 'Vanadium-induced fragmentation of crystalline CoFe hydr(oxy)oxide electrocatalysts for enhanced oxygen evolution reaction', International Journal of Hydrogen Energy, 46, pp. 35230 - 35238, http://dx.doi.org/10.1016/j.ijhydene.2021.08.080

Su Z; Chen J; Ren W; Guo H; Jia C; Yin S; Ho J; Zhao C, 2021, '“Water-in-Sugar” Electrolytes Enable Ultrafast and Stable Electrochemical Naked Proton Storage', Small, 17, pp. e2102375, http://dx.doi.org/10.1002/smll.202102375

Jia C; Zhao C, 2021, 'In-plane sulfur vacancy of MoS2 enabling efficient CO2 hydrogenation to methanol at low temperature', Science China Chemistry, 64, pp. 684 - 685, http://dx.doi.org/10.1007/s11426-021-9994-9

Zhao Y; Tan X; Yang W; Jia C; Chen X; Ren W; Smith SC; Zhao C, 2020, 'Surface Reconstruction of Ultrathin Palladium Nanosheets during Electrocatalytic CO2 Reduction', Angewandte Chemie - International Edition, 59, pp. 21493 - 21498, http://dx.doi.org/10.1002/anie.202009616

Zhao Y; Tan X; Yang W; Jia C; Chen X; Ren W; Smith SC; Zhao C, 2020, 'Surface Reconstruction of Ultrathin Palladium Nanosheets during Electrocatalytic CO2 Reduction', Angewandte Chemie, 132, pp. 21677 - 21682, http://dx.doi.org/10.1002/ange.202009616

Ren W; Tan X; Chen X; Zhang G; Zhao K; Yang W; Jia C; Zhao Y; Smith SC; Zhao C, 2020, 'Confinement of Ionic Liquids at Single-Ni-Sites Boost Electroreduction of CO2in Aqueous Electrolytes', ACS Catalysis, 10, pp. 13171 - 13178, http://dx.doi.org/10.1021/acscatal.0c03873

Adamson W; Jia C; Li Y; Zhao C, 2020, 'Cobalt oxide micro flowers derived from hydrothermal synthesised cobalt sulphide pre-catalyst for enhanced water oxidation', Electrochimica Acta, 355, http://dx.doi.org/10.1016/j.electacta.2020.136802

Jia C; Ching K; Kumar PV; Zhao C; Kumar N; Chen X; Das B, 2020, 'Vitamin B12on Graphene for Highly Efficient CO2Electroreduction', ACS Applied Materials and Interfaces, 12, pp. 41288 - 41293, http://dx.doi.org/10.1021/acsami.0c10125

Yang W; Zhao Y; Chen S; Ren W; Chen X; Jia C; Su Z; Wang Y; Zhao C, 2020, 'Defective Indium/Indium Oxide Heterostructures for Highly Selective Carbon Dioxide Electrocatalysis', Inorganic Chemistry, 59, pp. 12437 - 12444, http://dx.doi.org/10.1021/acs.inorgchem.0c01544

Jia C; Ren W; Chen X; Yang W; Zhao C, 2020, '(N, B) Dual Heteroatom-Doped Hierarchical Porous Carbon Framework for Efficient Electroreduction of Carbon Dioxide', ACS Sustainable Chemistry and Engineering, 8, pp. 6003 - 6010, http://dx.doi.org/10.1021/acssuschemeng.0c00739

Das B; Jia C; Ching K; Bhadbhade M; Chen X; Ball GE; Colbran SB; Zhao C, 2020, 'Ruthenium Complexes in Homogeneous and Heterogeneous Catalysis for Electroreduction of CO2', ChemCatChem, 12, pp. 1292 - 1296, http://dx.doi.org/10.1002/cctc.201902020

Jia C; Dastafkan K; Ren W; Yang W; Zhao C, 2019, 'Carbon-based catalysts for electrochemical CO2 reduction', Sustainable Energy & Fuels, http://dx.doi.org/10.1039/c9se00527g

Ren W; Tan X; Yang W; Jia C; Xu S; Wang K; Smith SC; Zhao C, 2019, 'Isolated Diatomic Ni-Fe Metal–Nitrogen Sites for Synergistic Electroreduction of CO2', Angewandte Chemie - International Edition, 58, pp. 6972 - 6976, http://dx.doi.org/10.1002/anie.201901575

Ren W; Tan X; Yang W; Jia C; Xu S; Wang K; Smith SC; Zhao C, 2019, 'Isolated Diatomic Ni‐Fe Metal–Nitrogen Sites for Synergistic Electroreduction of CO2', Angewandte Chemie, 131, pp. 7046 - 7050, http://dx.doi.org/10.1002/ange.201901575

Yang W; Chen S; Ren W; Zhao Y; Chen X; Jia C; Liu J; Zhao C, 2019, 'Nanostructured amalgams with tuneable silver-mercury bonding sites for selective electroreduction of carbon dioxide into formate and carbon monoxide', Journal of Materials Chemistry A, 7, pp. 15907 - 15912, http://dx.doi.org/10.1039/c9ta03611c

Yang W; Dastafkan K; Jia C; Zhao C, 2018, 'Design of Electrocatalysts and Electrochemical Cells for Carbon Dioxide Reduction Reactions', Advanced Materials Technologies, 3, http://dx.doi.org/10.1002/admt.201700377

Jia C; Tang J; Lu S; Han Y; Huang H, 2016, 'Enhanced Sensitivity for Hydrogen Peroxide Detection: Polydiacetylene Vesicles with Phenylboronic Acid Head Group', Journal of Fluorescence, 26, pp. 121 - 127, http://dx.doi.org/10.1007/s10895-015-1691-1

Lu S; Luo F; Duan X; Jia C; Han Y; Huang H, 2014, 'Hybrid polydiacetylene/magnetite nanoparticles: Sensing for sodium cetyltrimethylammonium bromide and streptavidin', Journal of Applied Polymer Science, 131, http://dx.doi.org/10.1002/app.40634

Lu S; Jia C; Duan X; Zhang X; Luo F; Han Y; Huang H, 2014, 'Polydiacetylene vesicles for hydrogen peroxide detection', Colloids and Surfaces A: Physicochemical and Engineering Aspects, 443, pp. 488 - 491, http://dx.doi.org/10.1016/j.colsurfa.2013.11.029

Jia C; Li H; Zhao W; Hu Y; Han Y, 2013, 'Preparation of mesoporous alumina and its catalytic performance in ethanol dehydration', Shiyou Huagong/Petrochemical Technology, 42, pp. 489 - 494

Zhao W; Chu X; Jia C; Han Y; Chen L; Hu Y, 2013, 'Numerical simulation of fixed-bed reactor for ethanol dehydration', Shiyou Huagong/Petrochemical Technology, 42, pp. 53 - 58

Zhang YL; Li YY; Jia C; Han YW; Hu Y, 2013, 'Research on stop-effect on the catalytic dehydration of ethanol over HZSM-5', Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 41, pp. 1495 - 1501


Back to profile page