Select Publications
Book Chapters
2024, 'Predictive big data analytics for supply chain demand forecasting', in Paul SK; Kautish S (ed.), Computational Intelligence Techniques for Sustainable Supply Chain Management, Academic Press, Elsevier, pp. 301 - 330, http://dx.doi.org/10.1016/B978-0-443-18464-2.00011-X
,2023, 'A Review on Uncertainty Modeling for Decentralized Supply Chain Systems', in Flexible Systems Management, Springer Nature Singapore, pp. 23 - 50, http://dx.doi.org/10.1007/978-981-99-2629-9_2
,2022, 'An Introduction to Evolutionary and Memetic Algorithms for Parameter Optimization', in Sarker R (ed.), Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling., Springer Nature, pp. 37 - 63, http://dx.doi.org/10.1007/978-3-030-88315-7_3
,2018, 'Open-Pit Mine Production Planning and Scheduling: A Research Agenda', in Sarker R; Abbass HA; Dunstall S; Kilby P; Davis R; Young L (ed.), , SPRINGER INTERNATIONAL PUBLISHING AG, pp. 221 - 226, http://dx.doi.org/10.1007/978-3-319-55914-8_16
,2018, 'A Comparative Study of Different Integer Linear Programming Approaches for Resource-Constrained Project Scheduling Problems', in Data and Decision Sciences in Action, Lecture Notes in Management and Industrial Engineering, Springer, Cham, pp. 227 - 242, http://dx.doi.org/10.1007/978-3-319-55914-8_17
,2017, 'Resource Constrained Multi-project Scheduling: A Priority Rule Based Evolutionary Local Search Approach', in Intelligent and Evolutionary Systems, Springer, Canberra, Australia, pp. 75 - 86, http://dx.doi.org/10.1007/978-3-319-49049-6_6
,2016, 'Differential evolution with landscape-based operator selection for solving numerical optimization problems', in Intelligent and Evolutionary Systems The 20th Asia Pacific Symposium, IES 2016, Canberra, Australia, November 2016, Proceedings, pp. 371 - 387, https://link.springer.com/content/pdf/10.1007%2F978-3-319-49049-6.pdf
,2016, 'Investigating multi-operator differential evolution for feature selection', in Ray T; Sarker R; Li X (ed.), Artificial Life and Computational Intelligence, Springer Nature, pp. 273 - 284, http://dx.doi.org/10.1007/978-3-319-28270-1_23
,2012, 'The influence of the number of initial feasible solutions on the performance of an evolutionary optimization algorithm', in , Springer Verlag, pp. 1 - 11, http://dx.doi.org/10.1007/978-3-642-34859-4_1
,2010, 'A Comparative Study of Different Variants of Genetic Algorithms for Constrained Optimization', in , Springer Berlin Heidelberg NewYork, Berlin Heidelberg NewYork, pp. 177 - 186, http://dx.doi.org/10.1007/978-3-642-17298-4_18
,2010, 'A Three-Strategy Based Differential Evolution Algorithm for Constrained Optimization', in , Springer Berlin Heidelberg NewYork, Berlin Heidelberg NewYork, pp. 585 - 592, http://dx.doi.org/10.1007/978-3-642-17537-4_71
,2010, 'The Role of Explicit Niching and Communication Messages in Distributed Evolutionary Multi-objective Optimization', in Vega FFD; Cantú-Paz E (ed.), Parallel and Distributed Computational Intelligence, Springer, pp. 181 - 206, http://dx.doi.org/10.1007/978-3-642-10675-0
,2009, 'A Genetic Algorithm with Priority Rules for Solving Job-Shop Scheduling Problems', in Chiong R; Dhakal S (ed.), Natural Intelligence for Scheduling, Planning and Packing Problems, Springer, Berlin / Heidelberg, pp. 55 - 88, http://dx.doi.org/10.1007/978-3-642-04039-9_3
,2006, 'Chapter I: All Hazards Analysis: A Complexity Perspective', in Abbass H; Essam D (ed.), Applications of Information Systems to Homeland Security and Defense, Idea Group Publishing, Hershey PA, USA: London, UK, pp. 1 - 16
,2005, 'All hazards analysis: A complexity perspective', in Applications of Information Systems to Homeland Security and Defense, pp. 1 - 16, http://dx.doi.org/10.4018/978-1-59140-640-2.ch001
,2005, 'Cooperative Coevolution of Genotype-Phenotype Mappings to Solve Epistatic Optimization Problems', in Abbass HA; Bossmaier T; Wiles J (ed.), Recent Advances in Artificial Life - Advances in Natural Computation - Vol. 3, World Scientific Publishing, Singapore, pp. 29 - 42, http://dx.doi.org/10.1142/9789812701497_0003
,2004, 'Finding Trigonometric Identities with Tree Adjunct Grammar Guided Genetic Programming', in Abraham A; Jain LC; van Der Zwaag BJ (ed.), Innovations in Intelligent Systems, Springer-Verlag, Heidelberg, pp. 221 - 234
,Edited Books
abbass ; essam , (ed.), 2006, Applications of Information Systems to Homeland Security And Defense, Igi Global
Journal articles
2024, 'A switching based forecasting approach for forecasting sales data in supply chains', Applied Soft Computing, 167, http://dx.doi.org/10.1016/j.asoc.2024.112419
,2024, 'A novel heuristic algorithm for disruption mitigation in a global food supply chain', Computers and Industrial Engineering, 194, http://dx.doi.org/10.1016/j.cie.2024.110334
,2024, 'Multiple landscape measure-based approach for dynamic optimization problems', Swarm and Evolutionary Computation, 88, pp. 101578 - 101578, http://dx.doi.org/10.1016/j.swevo.2024.101578
,2024, 'Large-scale evolutionary optimization: A review and comparative study', Swarm and Evolutionary Computation, 85, http://dx.doi.org/10.1016/j.swevo.2023.101466
,2024, 'An Adaptive Memetic Algorithm for a Cost-Optimal Electric Vehicle-Drone Routing Problem', IEEE Transactions on Intelligent Transportation Systems, 25, pp. 19619 - 19632, http://dx.doi.org/10.1109/TITS.2024.3467219
,2024, 'Integrating production, replenishment and fulfillment decisions for supply chains: a target-based robust optimisation approach', International Journal of Production Research, 62, pp. 4494 - 4529, http://dx.doi.org/10.1080/00207543.2023.2266063
,2024, 'Robust optimization approaches in inventory management: Part A—the survey', IISE Transactions, http://dx.doi.org/10.1080/24725854.2024.2381713
,2024, 'Robust optimization approaches in inventory management: Part B - the comparative study', IISE Transactions, http://dx.doi.org/10.1080/24725854.2024.2381727
,2023, 'AccessChain: An access control framework to protect data access in blockchain enabled supply chain', Future Generation Computer Systems, 148, pp. 380 - 394, http://dx.doi.org/10.1016/j.future.2023.06.009
,2023, 'Revisiting Implicit and Explicit Averaging for Noisy Optimization', IEEE Transactions on Evolutionary Computation, 27, pp. 1250 - 1259, http://dx.doi.org/10.1109/TEVC.2022.3201090
,2023, 'EEvoU-Net: An ensemble of evolutionary deep fully convolutional neural networks for medical image segmentation', Applied Soft Computing, 143, http://dx.doi.org/10.1016/j.asoc.2023.110405
,2023, 'Reputation based proof of cooperation: an efficient and scalable consensus algorithm for supply chain applications', Journal of Ambient Intelligence and Humanized Computing, 14, pp. 7795 - 7811, http://dx.doi.org/10.1007/s12652-023-04592-y
,2023, 'Solving electric vehicle–drone routing problem using memetic algorithm', Swarm and Evolutionary Computation, 79, http://dx.doi.org/10.1016/j.swevo.2023.101295
,2023, 'Evolutionary approach for dynamic constrained optimization problems', Alexandria Engineering Journal, 66, pp. 827 - 843, http://dx.doi.org/10.1016/j.aej.2022.10.072
,2023, 'A novel heuristic approach for planning decentralised supply chain under uncertainties', International Journal of Systems Science: Operations and Logistics, 10, http://dx.doi.org/10.1080/23302674.2023.2258778
,2023, 'Modified Differential Evolution Algorithm for Solving Dynamic Optimization with Existence of Infeasible Environments', Computers, Materials and Continua, 74, http://dx.doi.org/10.32604/cmc.2023.027448
,2022, 'Complexity Measures for IoT Network Traffic', IEEE Internet of Things Journal, 9, pp. 25715 - 25735, http://dx.doi.org/10.1109/JIOT.2022.3197323
,2022, 'Pro-Reactive Approach for Project Scheduling Under Unpredictable Disruptions', IEEE Transactions on Cybernetics, 52, pp. 11299 - 11312, http://dx.doi.org/10.1109/TCYB.2021.3097312
,2022, 'The implications of blockchain-coordinated information sharing within a supply chain: A simulation study', Blockchain Research and Applications, pp. 100110 - 100110, http://dx.doi.org/10.1016/j.bcra.2022.100110
,2022, 'A combined approach for modeling multi-echelon multi-period decentralized supply chain', Annals of Operations Research, 315, pp. 1665 - 1702, http://dx.doi.org/10.1007/s10479-021-04121-0
,2022, 'EvoDCNN: An evolutionary deep convolutional neural network for image classification', Neurocomputing, 488, pp. 271 - 283, http://dx.doi.org/10.1016/j.neucom.2022.02.003
,2022, 'Static and Dynamic Multimodal Optimization by Improved Covariance Matrix Self-Adaptation Evolution Strategy with Repelling Subpopulations', IEEE Transactions on Evolutionary Computation, 26, pp. 527 - 541, http://dx.doi.org/10.1109/TEVC.2021.3117116
,2022, 'A decomposition approach for large-scale non-separable optimization problems', Applied Soft Computing, 115, http://dx.doi.org/10.1016/j.asoc.2021.108168
,2022, 'PyDDRBG: A Python framework for benchmarking and evaluating static and dynamic multimodal optimization methods', SoftwareX, 17, pp. 100961, http://dx.doi.org/10.1016/j.softx.2021.100961
,2022, 'Poly-linear regression with augmented long short term memory neural network: Predicting time series data', Information Sciences, 606, pp. 573 - 600, http://dx.doi.org/10.1016/j.ins.2022.05.078
,2021, 'Evolutionary Deep Attention Convolutional Neural Networks for 2D and 3D Medical Image Segmentation', Journal of Digital Imaging, 34, pp. 1387 - 1404, http://dx.doi.org/10.1007/s10278-021-00526-2
,2021, 'A Two-stage Simulation Assisted Differential Evolution Algorithm for Reliable Chance Constrained Programming with Minimum Risk Level', Applied Soft Computing, 111, http://dx.doi.org/10.1016/j.asoc.2021.107637
,2021, 'A Novel Parametric benchmark generator for dynamic multimodal optimization', Swarm and Evolutionary Computation, 65, pp. 100924, http://dx.doi.org/10.1016/j.swevo.2021.100924
,2021, 'Adaptive Multilevel Prediction Method for Dynamic Multimodal Optimization', IEEE Transactions on Evolutionary Computation, 25, pp. 463 - 477, http://dx.doi.org/10.1109/TEVC.2021.3051172
,2021, 'A heredity-based adaptive variation operator for reinitialization in dynamic multi-objective problems', Applied Soft Computing, 101, pp. 107027, http://dx.doi.org/10.1016/j.asoc.2020.107027
,2021, 'Weighted pointwise prediction method for dynamic multiobjective optimization', Information Sciences, 546, pp. 349 - 367, http://dx.doi.org/10.1016/j.ins.2020.08.015
,2021, '2D to 3D Evolutionary Deep Convolutional Neural Networks for Medical Image Segmentation', IEEE Transactions on Medical Imaging, 40, pp. 712 - 721, http://dx.doi.org/10.1109/TMI.2020.3035555
,