Select Publications
Journal articles
2013, 'Coulomb interaction and valley-orbit coupling in Si quantum dots', Physical Review - Section B - Condensed Matter, 88, pp. 085311-1 - 085311-6, http://dx.doi.org/10.1103/PhysRevB.88.085311
,2013, 'Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting', Nature communications, 4, http://dx.doi.org/10.1038/ncomms3069
,2012, 'Orbital and valley state spectra of a few-electron silicon quantum dot', Physical Review B, 86, pp. 115319, http://dx.doi.org/10.1103/PhysRevB.86.115319
,2011, 'Dynamically controlled charge sensing of a few-electron silicon quantum dot', AIP Advances, 1, http://dx.doi.org/10.1063/1.3654496
,2011, 'Pauli Spin Blockade in a Highly Tunable Silicon Double Quantum Dot', Scientific Reports, 1, http://dx.doi.org/10.1038/srep00110
,2011, 'Spin filling of valley-orbit states in a silicon quantum dot', Nanotechnology, 22, pp. Article number: 335704, http://dx.doi.org/10.1088/0957-4484/22/33/335704
,Conference Papers
2024, 'Demonstration of 99.9% single qubit control fidelity of a silicon quantum dot spin qubit made in a 300 mm foundry process', in 2024 IEEE Silicon Nanoelectronics Workshop, SNW 2024, pp. 11 - 12, http://dx.doi.org/10.1109/SNW63608.2024.10639218
,2015, 'Designing a large scale quantum computer with atomistic simulations', in 2014 Silicon Nanoelectronics Workshop, SNW 2014, http://dx.doi.org/10.1109/SNW.2014.7348565
,2011, 'Independent control of dot occupancy and reservoir electron density in a one-electron quantum dot', in AIP Conference Proceedings, pp. 349 - 350, http://dx.doi.org/10.1063/1.3666397
,Patents
2023, Advanced processing apparatus comprising a plurality of quantum processing elements, Patent No. Hong Kong - HK1248921; India - 479776; South Korea - 2574909
,2022, Advanced processing apparatus comprising a plurality of quantum processing elements, Patent No. Australia - 2016303798
,2022, Quantum processing device comprising a plurality of quantum processing elements, Patent No. China - ZL201680045977.2
,2022, Advanced processing apparatus, Patent No. Belgium, Denmark, Europe, Finland, France, Ireland, Netherlands, Norway, Sweden, Switzerland, United Kingdom - 3152153; Germany - 602014082262.2; Italy - 502022000024161; Spain - 300445988
,2020, Advanced processing apparatus comprising a plurality of quantum processing elements, Patent No. United States patent no. 10692924, Singapore 2021 pat no.11201800814T, Patent Agent:UNSW ref - 2015-055, https://worldwide.espacenet.com/publicationDetails/biblio?II=0&ND=3&adjacent=true&locale=en_EP&FT=D&date=20180809&CC=US&NR=2018226451A1&KC=A1
,2018, Advanced processing apparatus, Patent No. US patent no. 9886668; China patent no. ZL201480079553.9, https://pdfpiw.uspto.gov/.piw?Docid=09886668&homeurl=http%3A%2F%2Fpatft.uspto.gov%2Fnetacgi%2Fnph-Parser%3FSect1%3DPTO1%2526Sect2%3DHITOFF%2526d%3DPALL%2526p%3D1%2526u%3D%25252Fnetahtml%25252FPTO%25252Fsrchnum.htm%2526r%3D1%2526f%3DG%2526l%3D50%2526s1%3D9886668.PN.%2526OS%3DPN%2F9886668%2526RS%3DPN%2F9886668&PageNum=&Rtype=&SectionNum=&idkey=NONE&Input=View+first+page
,Working Papers
2023, Bounds to electron spin qubit variability for scalable CMOS architectures, http://dx.doi.org10.21203/rs.3.rs-3057916/v1, http://dx.doi.org/10.21203/rs.3.rs-3057916/v1
,Creative Works (non-textual)
2023, Jellybean Quantum Dots in Silicon for Qubit Coupling and On‐Chip Quantum Chemistry (Adv. Mater. 19/2023), at: http://dx.doi.org/10.1002/adma.202370133
,Preprints
2024, Violating Bell's inequality in gate-defined quantum dots, http://arxiv.org/abs/2407.15778v2
,2024, Spin Qubits with Scalable milli-kelvin CMOS Control, http://dx.doi.org/10.48550/arxiv.2407.15151
,2023, Entangling gates on degenerate spin qubits dressed by a global field, http://dx.doi.org/10.1038/s41467-024-52010-4
,2023, Tomography of entangling two-qubit logic operations in exchange-coupled donor electron spin qubits, http://dx.doi.org/10.48550/arxiv.2309.15463
,2023, Real-time feedback protocols for optimizing fault-tolerant two-qubit gate fidelities in a silicon spin system, http://dx.doi.org/10.1063/5.0179958
,2023, Spatio-temporal correlations of noise in MOS spin qubits, http://arxiv.org/abs/2309.12542v2
,2023, Impact of electrostatic crosstalk on spin qubits in dense CMOS quantum dot arrays, http://dx.doi.org/10.1103/PhysRevB.110.125414
,2023, High-fidelity operation and algorithmic initialisation of spin qubits above one kelvin, http://dx.doi.org/10.1038/s41586-024-07160-2
,2023, Characterizing non-Markovian Quantum Process by Fast Bayesian Tomography, http://arxiv.org/abs/2307.12452v2
,2023, Bounds to electron spin qubit variability for scalable CMOS architectures, http://dx.doi.org/10.1038/s41467-024-48557-x
,2023, Accessing the Full Capabilities of Filter Functions: A Tool for Detailed Noise and Control Susceptibility Analysis, http://dx.doi.org/10.1103/PhysRevA.108.012426
,2022, High Fidelity Control of a Nitrogen-Vacancy Spin Qubit at Room Temperature using the SMART Protocol, http://dx.doi.org/10.1103/PhysRevA.108.022606
,2022, Jellybean quantum dots in silicon for qubit coupling and on-chip quantum chemistry, http://dx.doi.org/10.1002/adma.202208557
,2022, Control of dephasing in spin qubits during coherent transport in silicon, http://dx.doi.org/10.1103/PhysRevB.107.085427
,2022, On-demand electrical control of spin qubits, http://dx.doi.org/10.1038/s41565-022-01280-4
,2021, Development of an Undergraduate Quantum Engineering Degree, http://dx.doi.org/10.1109/TQE.2022.3157338
,2021, Implementation of the SMART protocol for global qubit control in silicon, http://dx.doi.org/10.48550/arxiv.2108.00836
,2021, Quantum Computation Protocol for Dressed Spins in a Global Field, http://dx.doi.org/10.1103/PhysRevB.104.235411
,2021, The SMART protocol -- Pulse engineering of a global field for robust and universal quantum computation, http://dx.doi.org/10.1103/PhysRevA.104.062415
,2021, Coherent control of electron spin qubits in silicon using a global field, http://dx.doi.org/10.48550/arxiv.2107.14622
,2021, Fast Bayesian tomography of a two-qubit gate set in silicon, http://dx.doi.org/10.48550/arxiv.2107.14473
,2021, Materials for Silicon Quantum Dots and their Impact on Electron Spin Qubits, http://arxiv.org/abs/2107.13664v2
,2021, A high-sensitivity charge sensor for silicon qubits above one kelvin, http://dx.doi.org/10.48550/arxiv.2103.06433
,2021, Roadmap on quantum nanotechnologies, http://dx.doi.org/10.48550/arxiv.2101.07882
,2020, Single-electron spin resonance in a nanoelectronic device using a global field, http://dx.doi.org/10.48550/arxiv.2012.10225
,2020, Bell-state tomography in a silicon many-electron artificial molecule, http://dx.doi.org/10.48550/arxiv.2008.03968
,2020, Coherent spin qubit transport in silicon, http://dx.doi.org/10.48550/arxiv.2008.04020
,2020, Single-electron operation of a silicon-CMOS 2x2 quantum dot array with integrated charge sensing, http://dx.doi.org/10.48550/arxiv.2004.11558
,2020, Exchange coupling in a linear chain of three quantum-dot spin qubits in silicon, http://dx.doi.org/10.48550/arxiv.2004.07666
,2020, Pauli Blockade in Silicon Quantum Dots with Spin-Orbit Control, http://dx.doi.org/10.48550/arxiv.2004.07078
,2019, A silicon quantum-dot-coupled nuclear spin qubit, http://dx.doi.org/10.48550/arxiv.1904.08260
,2019, Silicon quantum processor unit cell operation above one Kelvin, http://dx.doi.org/10.48550/arxiv.1902.09126
,2019, Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot, http://dx.doi.org/10.48550/arxiv.1902.01550
,