Select Publications
Books
, 2020, Energy Harvesting Properties of Electrospun Nanofibers, Fang J; Lin T, (ed.), IOP PUBLISHING LTD, http://dx.doi.org/10.1088/978-0-7503-2005-4
Book Chapters
2020, 'Novel drug delivery systems', in Seyfoddin A; Dezfooli SM; Greene CA (ed.), ENGINEERING DRUG DELIVERY SYSTEMS, WOODHEAD PUBL LTD, pp. 1 - 16, http://dx.doi.org/10.1016/B978-0-08-102548-2.00001-9
,2020, '7 Intelligent drug delivery systems', in Engineering Drug Delivery Systems, Elsevier, pp. 163 - 184, http://dx.doi.org/10.1016/b978-0-08-102548-2.00007-x
,2019, 'Enhancing β crystal phase content in electrospun PVDF nanofibers', in Energy Harvesting Properties of Electrospun Nanofibers, IOP Publishing, http://dx.doi.org/10.1088/978-0-7503-2005-4ch5
,2019, 'Intelligent drug delivery systems', in Engineering Drug Delivery Systems, pp. 163 - 184, http://dx.doi.org/10.1016/B978-0-08-102548-2.00007-X
,2018, 'Hydrogels Fibers', in Hydrogels, InTech, http://dx.doi.org/10.5772/intechopen.74188
,2018, 'Carbon nanotube-graphene composites fibers', in Inorganic and Composite Fibers: Production, Properties, and Applications, pp. 61 - 86, http://dx.doi.org/10.1016/B978-0-08-102228-3.00004-9
,2018, 'Chapter 4 Carbon Nanotube-Graphene Composites Fibers', in Inorganic and Composite Fibers, Elsevier, pp. 61 - 86, http://dx.doi.org/10.1016/b978-0-08-102228-3.00004-9
,2016, 'Electrothermally Driven Carbon-Based Materials as EAPs: Fundamentals and Device Configurations', in Electromechanically Active Polymers, Springer International Publishing, pp. 1 - 16, http://dx.doi.org/10.1007/978-3-319-31767-0_19-1
,2016, 'Electrothermally Driven Carbon-Based Materials as EAPs: Fundamentals and Device Configurations', in Electromechanically Active Polymers, Springer International Publishing, pp. 455 - 470, http://dx.doi.org/10.1007/978-3-319-31530-0_19
,2015, 'Conducting polymer fibers', in Handbook of Smart Textiles, pp. 31 - 62, http://dx.doi.org/10.1007/978-981-4451-45-1_14
,2014, 'Conducting Polymer Fibers', in Handbook of Smart Textiles, Springer Singapore, pp. 1 - 27, http://dx.doi.org/10.1007/978-981-4451-68-0_14-1
,Journal articles
2024, 'Advanced Energy Harvesters and Energy Storage for Powering Wearable and Implantable Medical Devices', Advanced Materials, 36, http://dx.doi.org/10.1002/adma.202404492
,2024, 'Highly stretchable nanocomposite piezofibers: a step forward into practical applications in biomedical devices', Journal of Materials Chemistry B, 12, pp. 9727 - 9739, http://dx.doi.org/10.1039/d4tb01630k
,2024, 'Contactless vital sign monitoring systems: a comprehensive survey of remote health sensing for heart rate and respiration in internet of things and sleep applications', Sensors and Diagnostics, 3, pp. 1085 - 1118, http://dx.doi.org/10.1039/d4sd00073k
,2024, 'Manufacturing Ulvan Biopolymer for Wound Dressings', Macromolecular Materials and Engineering, 309, http://dx.doi.org/10.1002/mame.202300268
,2023, 'Ab initio calculations of structural, electronic, optical, and magnetic properties of delafossite SMoO
2023, 'Advances in Wearable Piezoelectric Sensors for Hazardous Workplace Environments', Global Challenges, 7, http://dx.doi.org/10.1002/gch2.202300019
,2023, 'Artificial Muscles and Soft Robotic Devices for Treatment of End-Stage Heart Failure', Advanced Materials, 35, pp. e2207390, http://dx.doi.org/10.1002/adma.202207390
,2023, 'Wearable Carbon Nanotube‐Spandex Textile Yarns for Knee Flexion Monitoring', Advanced Sensor Research, 2, http://dx.doi.org/10.1002/adsr.202200021
,2022, 'Magnetic, Electrical, and Physical Properties Evolution in Fe3O4 Nanofiller Reinforced Aluminium Matrix Composite Produced by Powder Metallurgy Method', Materials, 15, pp. 4153, http://dx.doi.org/10.3390/ma15124153
,2022, 'Soft Robotic Dynamic Cardiomyoplasty with Electrically Contractile Artificial Muscle (AHM)', JOURNAL OF HEART AND LUNG TRANSPLANTATION, 41, pp. S103 - S103, https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000780119700216&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=891bb5ab6ba270e68a29b250adbe88d1
,2022, 'Implantable coaxial nanocomposite biofibers for local chemo‐photothermal combinational cancer therapy', Nano Select, 3, pp. 212 - 226, http://dx.doi.org/10.1002/nano.202100124
,2021, '3D-printed coaxial hydrogel patches with mussel-inspired elements for prolonged release of gemcitabine', Polymers, 13, pp. 4367, http://dx.doi.org/10.3390/polym13244367
,2021, 'Heterogeneous photoelectro-Fenton using ZnO and TiO
2021, 'Dynamic mechanical and creep behaviour of meltspun pvdf nanocomposite fibers', Nanomaterials, 11, pp. 2153, http://dx.doi.org/10.3390/nano11082153
,2021, 'High Performance Artificial Muscles to Engineer a Ventricular Cardiac Assist Device and Future Perspectives of a Cardiac Sleeve', Advanced Materials Technologies, 6, http://dx.doi.org/10.1002/admt.202000894
,2021, 'Dual high-stroke and high–work capacity artificial muscles inspired by DNA supercoiling', Science Robotics, 6, http://dx.doi.org/10.1126/scirobotics.abf4788
,2021, 'A new approach to develop, characterise and model actuating textiles', Smart Materials and Structures, 30, http://dx.doi.org/10.1088/1361-665X/abd58d
,2021, 'An octagonal-shaped conductive HC12 & LIBERATOR-40 thread embroidered chipless RFID for general IoT applications', Sensors and Actuators, A: Physical, 318, http://dx.doi.org/10.1016/j.sna.2020.112485
,2021, 'Bending analysis of polymer-based flexible antennas for wearable, general iot applications: A review', Polymers, 13, pp. 1 - 34, http://dx.doi.org/10.3390/polym13030357
,2021, 'Highly Stretchable Self-Powered Wearable Electrical Energy Generator and Sensors', Advanced Materials Technologies, 6, http://dx.doi.org/10.1002/admt.202000841
,2021, 'Twisted and coiled multi-ply yarns artificial muscles', Sensors and Actuators, A: Physical, 318, http://dx.doi.org/10.1016/j.sna.2020.112490
,2021, 'Unipolar stroke, electroosmotic pump carbon nanotube yarn muscles', Science, 371, http://dx.doi.org/10.1126/science.abc4538
,2021, 'Triaxial carbon nanotube/conducting polymer wet-spun fibers supercapacitors for wearable electronics', Nanomaterials, 11, pp. 1 - 16, http://dx.doi.org/10.3390/nano11010003
,2021, 'Artificial Muscles: High Performance Artificial Muscles to Engineer a Ventricular Cardiac Assist Device and Future Perspectives of a Cardiac Sleeve (Adv. Mater. Technol. 5/2021)', Advanced Materials Technologies, 6, http://dx.doi.org/10.1002/admt.202170025
,2020, 'Advances in wearable sensors: Signalling the provenance of garments using radio frequency watermarks', Sensors (Switzerland), 20, pp. 1 - 9, http://dx.doi.org/10.3390/s20226661
,2020, 'Nanofibers-based piezoelectric energy harvester for self-powered wearable technologies', Polymers, 12, pp. 1 - 15, http://dx.doi.org/10.3390/polym12112697
,2020, 'Artificial Muscles from Hybrid Carbon Nanotube-Polypyrrole-Coated Twisted and Coiled Yarns', Macromolecular Materials and Engineering, 305, http://dx.doi.org/10.1002/mame.202000421
,2020, 'Dual Delivery of Gemcitabine and Paclitaxel by Wet-Spun Coaxial Fibers Induces Pancreatic Ductal Adenocarcinoma Cell Death, Reduces Tumor Volume, and Sensitizes Cells to Radiation', Advanced Healthcare Materials, 9, http://dx.doi.org/10.1002/adhm.202001115
,2020, 'Coaxial mussel-inspired biofibers: Making of a robust and efficacious depot for cancer drug delivery', Journal of Materials Chemistry B, 8, pp. 5064 - 5079, http://dx.doi.org/10.1039/d0tb00052c
,2020, 'Fabrication of Aligned Biomimetic Gellan Gum-Chitosan Microstructures through 3D Printed Microfluidic Channels and Multiple in Situ Cross-Linking Mechanisms', ACS Biomaterials Science and Engineering, 6, pp. 3638 - 3648, http://dx.doi.org/10.1021/acsbiomaterials.0c00260
,2020, 'Piezofibers to smart textiles: a review on recent advances and future outlook for wearable technology', Journal of Materials Chemistry A, 8, pp. 9496 - 9522, http://dx.doi.org/10.1039/d0ta00227e
,2020, 'Wearable Electronic Textiles from Nanostructured Piezoelectric Fibers', Advanced Materials Technologies, 5, http://dx.doi.org/10.1002/admt.201900900
,2020, 'Electrically Conducting Hydrogel Graphene Nanocomposite Biofibers for Biomedical Applications', Frontiers in Chemistry, 8, pp. 88, http://dx.doi.org/10.3389/fchem.2020.00088
,2020, 'Wet-Spun Trojan Horse Cell Constructs for Engineering Muscle', Frontiers in Chemistry, 8, pp. 18, http://dx.doi.org/10.3389/fchem.2020.00018
,2020, 'Transient response & electromagnetic behaviour of flexible bow-tie shaped chip-less RFID tag for general IoT applications', Advances in Science, Technology and Engineering Systems, 5, pp. 757 - 764, http://dx.doi.org/10.25046/AJ050592
,2019, 'Hybrid Graphene/Conducting Polymer Strip Sensors for Sensitive and Selective Electrochemical Detection of Serotonin', ACS Omega, 4, pp. 22169 - 22177, http://dx.doi.org/10.1021/acsomega.9b03456
,2019, 'Sulfated polysaccharide-based scaffolds for orthopaedic tissue engineering', Biomaterials, 214, http://dx.doi.org/10.1016/j.biomaterials.2019.05.025
,2019, 'Self-Healing Hydrogels: The Next Paradigm Shift in Tissue Engineering?', Advanced Science, 6, http://dx.doi.org/10.1002/advs.201801664
,