Select Publications
Journal articles
2024, 'Self-Doping and Self-Acid-Doping of Conjugated Polymer Bioelectronics: The Case for Accuracy in Nomenclature', Advanced Healthcare Materials, 13, http://dx.doi.org/10.1002/adhm.202302354
,2024, 'A PEDOT based graft copolymer with enhanced electronic stability', Materials Horizons, 11, pp. 4809 - 4818, http://dx.doi.org/10.1039/d4mh00654b
,2024, 'Fabrication of Electronically Conductive Protein-Heme Nanowires for Power Harvesting', Small, 20, http://dx.doi.org/10.1002/smll.202311661
,2024, 'Organic Mixed Ionic-Electronic Conductors Based on Tunable and Functional Poly(3,4-ethylenedioxythiophene) Copolymers', ACS Applied Materials and Interfaces, 16, pp. 28969 - 28979, http://dx.doi.org/10.1021/acsami.4c03229
,2024, 'Fabrication of Electronically Conductive Protein‐Heme Nanowires for Power Harvesting (Small 29/2024)', Small, 20, http://dx.doi.org/10.1002/smll.202470221
,2023, 'Erratum: A Phosphonated Poly(ethylenedioxythiophene) Derivative with Low Oxidation Potential for Energy-Efficient Bioelectronic Devices (Chemistry of Materials (2022) 34:1 (140-151) DOI: 10.1021/acs.chemmater.1c02936)', Chemistry of Materials, 35, pp. 4882, http://dx.doi.org/10.1021/acs.chemmater.3c01178
,2023, 'Protonic conductivity in metalloprotein nanowires', Journal of Materials Chemistry C, 11, pp. 3626 - 3633, http://dx.doi.org/10.1039/d2tc05373j
,2022, 'Molecular design of an electropolymerized copolymer with carboxylic and sulfonic acid functionalities', Synthetic Metals, 285, http://dx.doi.org/10.1016/j.synthmet.2022.117029
,2022, 'A Phosphonated Poly(ethylenedioxythiophene) Derivative with Low Oxidation Potential for Energy-Efficient Bioelectronic Devices', Chemistry of Materials, 34, pp. 140 - 151, http://dx.doi.org/10.1021/acs.chemmater.1c02936
,2021, 'Impact of Sterilization on a Conjugated Polymer-Based Bioelectronic Patch', ACS Applied Polymer Materials, 3, pp. 2541 - 2552, http://dx.doi.org/10.1021/acsapm.1c00131
,2021, 'A conjugated polymer-liposome complex: A contiguous water-stable, electronic, and optical interface', VIEW, 2, http://dx.doi.org/10.1002/VIW.20200081
,2021, 'Single-Material OECT-Based Flexible Complementary Circuits Featuring Polyaniline in Both Conducting Channels', Advanced Functional Materials, 31, http://dx.doi.org/10.1002/adfm.202007205
,2021, 'Frontispiece: A conjugated polymer‐liposome complex: A contiguous water‐stable, electronic, and optical interface (View 1/2021)', VIEW, 2, http://dx.doi.org/10.1002/viw2.92
,2019, 'Photoactive Organic Substrates for Cell Stimulation: Progress and Perspectives', Advanced Materials Technologies, 4, http://dx.doi.org/10.1002/admt.201800744
,2018, 'A flexible polyaniline-based bioelectronic patch', Biomaterials Science, 6, pp. 493 - 500, http://dx.doi.org/10.1039/c7bm00880e
,2016, 'Direct imaging of defect formation in strained organic flexible electronics by Scanning Kelvin Probe Microscopy', Scientific Reports, 6, http://dx.doi.org/10.1038/srep38203
,Conference Papers
2022, 'Bio-functionalized organic electrochemical transistors for in vitro recording of electrogenic cells', in Proceedings of the Organic Bioelectronics Conference 2022, Fundacio Scito, presented at Proceedings of the Organic Bioelectronics Conference 2022, 08 February 2022 - 09 February 2022, http://dx.doi.org/10.29363/nanoge.obe.2022.016
,Preprints
2023, Fabrication of electronically conductive protein-heme nanowires for power harvesting, http://dx.doi.org/10.48550/arxiv.2310.10042
,2021, Impact of sterilization on a conjugated polymer based bioelectronic patch, http://dx.doi.org/10.1101/2021.01.19.427349
,2020, Flexible complementary logic circuit built from two identical organic electrochemical transistors, http://arxiv.org/abs/2006.15525v1
,