Select Publications
Journal articles
2024, 'Protein isoform-centric therapeutics: expanding targets and increasing specificity', Nature Reviews Drug Discovery, 23, pp. 759 - 779, http://dx.doi.org/10.1038/s41573-024-01025-z
,2024, 'Genome-scale exon perturbation screens uncover exons critical for cell fitness', Molecular Cell, 84, pp. 2553 - 2572.e19, http://dx.doi.org/10.1016/j.molcel.2024.05.024
,2023, 'Systematic analysis of alternative exon-dependent interactome remodeling reveals multitasking functions of gene regulatory factors', Molecular Cell, 83, pp. 4222 - 4238.e10, http://dx.doi.org/10.1016/j.molcel.2023.10.034
,2023, 'Fetal exposure to valproic acid dysregulates the expression of autism-linked genes in the developing cerebellum', Translational Psychiatry, 13, http://dx.doi.org/10.1038/s41398-023-02391-9
,2023, 'Global detection of human variants and isoforms by deep proteome sequencing', Nature Biotechnology, 41, pp. 1776 - 1786, http://dx.doi.org/10.1038/s41587-023-01714-x
,2023, 'The function of alternative splicing in the proteome: rewiring protein interactomes to put old functions into new contexts', Nature Structural and Molecular Biology, 30, pp. 1844 - 1856, http://dx.doi.org/10.1038/s41594-023-01155-9
,2022, 'Active DNA demethylation of developmental cis-regulatory regions predates vertebrate origins', Science Advances, 8, http://dx.doi.org/10.1126/sciadv.abn2258
,2022, 'Alu-minating the Mechanisms Underlying Primate Cortex Evolution', Biological Psychiatry, 92, pp. 760 - 771, http://dx.doi.org/10.1016/j.biopsych.2022.04.021
,2022, 'The retroelement Lx9 puts a brake on the immune response to virus infection', Nature, 608, pp. 757 - 765, http://dx.doi.org/10.1038/s41586-022-05054-9
,2022, 'Systematic exploration of dynamic splicing networks reveals conserved multistage regulators of neurogenesis', Molecular Cell, 82, pp. 2982 - 2999.e14, http://dx.doi.org/10.1016/j.molcel.2022.06.036
,2022, 'Systematic mapping of nuclear domain-associated transcripts reveals speckles and lamina as hubs of functionally distinct retained introns', Molecular Cell, 82, pp. 1035 - 1052.e9, http://dx.doi.org/10.1016/j.molcel.2021.12.010
,2022, 'Standardized practices for RNA diagnostics using clinically accessible specimens reclassifies 75% of putative splicing variants', Genetics in Medicine, 24, pp. 130 - 145, http://dx.doi.org/10.1016/j.gim.2021.09.001
,2021, 'Differential contribution of transcriptomic regulatory layers in the definition of neuronal identity', Nature Communications, 12, http://dx.doi.org/10.1038/s41467-020-20483-8
,2021, 'Evolutionary dynamics of circular rnas in primates', eLife, 10, http://dx.doi.org/10.7554/eLife.69148
,2021, 'Evolutionary dynamics of circular RNAs in primates', , http://dx.doi.org/10.1101/2021.05.01.442284
,2020, 'A Dynamic Splicing Program Ensures Proper Synaptic Connections in the Developing Cerebellum', Cell Reports, 31, http://dx.doi.org/10.1016/j.celrep.2020.107703
,2020, 'A reference map of the human binary protein interactome', Nature, 580, pp. 402 - 408, http://dx.doi.org/10.1038/s41586-020-2188-x
,2020, 'Shifts in Ribosome Engagement Impact Key Gene Sets in Neurodevelopment and Ubiquitination in Rett Syndrome', Cell Reports, 30, pp. 4179 - 4196.e11, http://dx.doi.org/10.1016/j.celrep.2020.02.107
,2020, 'Autism-Misregulated eIF4G Microexons Control Synaptic Translation and Higher Order Cognitive Functions', Molecular Cell, 77, pp. 1176 - 1192.e16, http://dx.doi.org/10.1016/j.molcel.2020.01.006
,2019, 'Multilayered control of exon acquisition permits the emergence of novel forms of regulatory control', Breast Cancer Research, 21, http://dx.doi.org/10.1186/s13059-019-1757-5
,2019, 'Autism spectrum disorder: insights into convergent mechanisms from transcriptomics', Nature Reviews Genetics, 20, pp. 51 - 63, http://dx.doi.org/10.1038/s41576-018-0066-2
,2018, 'Efficient and Accurate Quantitative Profiling of Alternative Splicing Patterns of Any Complexity on a Laptop', Molecular Cell, 72, pp. 187 - 200.e6, http://dx.doi.org/10.1016/j.molcel.2018.08.018
,2017, 'Regulatory Expansion in Mammals of Multivalent hnRNP Assemblies that Globally Control Alternative Splicing', Cell, 170, pp. 324 - 339.e23, http://dx.doi.org/10.1016/j.cell.2017.06.037
,2017, 'Whippet: an efficient method for the detection and quantification of alternative splicing reveals extensive transcriptomic complexity', , http://dx.doi.org/10.1101/158519
,2017, 'Multilayered Control of Alternative Splicing Regulatory Networks by Transcription Factors', Molecular Cell, 65, pp. 539 - 553.e7, http://dx.doi.org/10.1016/j.molcel.2017.01.011
,2016, 'The ribosome-engaged landscape of alternative splicing', Nature Structural and Molecular Biology, 23, pp. 1117 - 1123, http://dx.doi.org/10.1038/nsmb.3317
,2016, 'Molecular Principles of Gene Fusion Mediated Rewiring of Protein Interaction Networks in Cancer', Molecular Cell, 63, pp. 579 - 592, http://dx.doi.org/10.1016/j.molcel.2016.07.008
,2016, 'An extensive program of periodic alternative splicing linked to cell cycle progression', eLife, 5, http://dx.doi.org/10.7554/eLife.10288
,2015, 'How do disordered regions achieve comparable functions to structured domains?', Protein Science, 24, pp. 909 - 922, http://dx.doi.org/10.1002/pro.2674
,2014, 'A highly conserved program of neuronal microexons is misregulated in autistic brains', Cell, 159, pp. 1511 - 1523, http://dx.doi.org/10.1016/j.cell.2014.11.035
,2014, 'Asymmetric mRNA localization contributes to fidelity and sensitivity of spatially localized systems', Nature Structural and Molecular Biology, 21, pp. 833 - 839, http://dx.doi.org/10.1038/nsmb.2876
,2014, 'Classification of intrinsically disordered regions and proteins', Chemical Reviews, 114, pp. 6589 - 6631, http://dx.doi.org/10.1021/cr400525m
,2014, 'Short linear motifs: Ubiquitous and functionally diverse protein interaction modules directing cell regulation', Chemical Reviews, 114, pp. 6733 - 6778, http://dx.doi.org/10.1021/cr400585q
,2014, 'Controlling entropy to tune the functions of intrinsically disordered regions', Current Opinion in Structural Biology, 26, pp. 62 - 72, http://dx.doi.org/10.1016/j.sbi.2014.05.007
,2014, 'Erratum: Attributes of short linear motifs (Molecular BioSystems (2012) 8 (268-281) DOI: 10.1039/C1MB05231D)', Molecular BioSystems, 10, pp. 2481, http://dx.doi.org/10.1039/C4MB90028F
,2014, 'Proteome-wide analysis of human disease mutations in short linear motifs: Neglected players in cancer?', Molecular BioSystems, 10, pp. 2626 - 2642, http://dx.doi.org/10.1039/c4mb00290c
,2014, 'The eukaryotic linear motif resource ELM: 10 years and counting', Nucleic Acids Research, 42, http://dx.doi.org/10.1093/nar/gkt1047
,2013, 'Drift and conservation of differential exon usage across tissues in primate species', Proceedings of the National Academy of Sciences of the United States of America, 110, pp. 15377 - 15382, http://dx.doi.org/10.1073/pnas.1307202110
,2013, 'The switches.ELM resource: A compendium of conditional regulatory interaction interfaces', Science Signaling, 6, http://dx.doi.org/10.1126/scisignal.2003345
,2013, 'The hidden codes that shape protein evolution', Science, 342, pp. 1325 - 1326, http://dx.doi.org/10.1126/science.1248425
,2012, 'Linear motifs confer functional diversity onto splice variants', Nucleic Acids Research, 40, pp. 7123 - 7131, http://dx.doi.org/10.1093/nar/gks442
,2012, 'Linear motifs: Lost in (pre)translation', Trends in Biochemical Sciences, 37, pp. 333 - 341, http://dx.doi.org/10.1016/j.tibs.2012.05.001
,2012, 'iELM-a web server to explore short linear motif-mediated interactions', Nucleic Acids Research, 40, pp. w364 - w369, http://dx.doi.org/10.1093/nar/gks444
,2012, 'The identification of short linear motif-mediated interfaces within the human interactome', Bioinformatics, 28, pp. 976 - 982, http://dx.doi.org/10.1093/bioinformatics/bts072
,2012, 'Attributes of short linear motifs', Molecular BioSystems, 8, pp. 268 - 281, http://dx.doi.org/10.1039/c1mb05231d
,2012, 'ELM - The database of eukaryotic linear motifs', Nucleic Acids Research, 40, http://dx.doi.org/10.1093/nar/gkr1064
,2009, 'ELM: The status of the 2010 eukaryotic linear motif resource', Nucleic Acids Research, 38, http://dx.doi.org/10.1093/nar/gkp1016
,2009, 'Network features and pathway analyses of a signal transduction cascade', Frontiers in Neuroinformatics, 3, http://dx.doi.org/10.3389/neuro.11.013.2009
,2009, 'Executive control of spatial attention shifts in the auditory compared to the visual modality', Human Brain Mapping, 30, pp. 1457 - 1469, http://dx.doi.org/10.1002/hbm.20615
,2009, 'Network Features and Pathway Analyses of a Signal Transduction Cascade.', Front Neuroinform, 3, pp. 13, http://dx.doi.org/10.3389/neuro.11/013.2009
,