Select Publications

Journal articles

Disney S; Sloan IH, 1992, 'Lattice integration rules of maximal rank formed by copying rank 1 rules', SIAM Journal on Numerical Analysis, 29, pp. 566 - 577, http://dx.doi.org/10.1137/0729036

Joe S; Sloan IH, 1992, 'On computing the lattice rule criterion R', Mathematics of Computation, 59, pp. 557 - 568, http://dx.doi.org/10.1090/S0025-5718-1992-1134733-2

Anselone PM; Sloan IH, 1992, 'Spectral approximations for wiener-hopf operators II', Journal of Integral Equations and Applications, 4, pp. 465 - 489, http://dx.doi.org/10.1216/jiea/1181075710

Sloan IH, 1991, 'Error bounds for the method of good lattice points', Mathematics of Computation, 56, pp. 257 - 266, http://dx.doi.org/10.1090/S0025-5718-1991-1052090-6

Brown G; Chandler GA; Sloan IH; Wilson DC, 1991, 'Properties of certain trigonometric series arising in numerical analysis', Journal of Mathematical Analysis and Applications, 162, pp. 371 - 380, http://dx.doi.org/10.1016/0022-247X(91)90155-S

Atkinson KE; Sloan IH, 1991, 'The numerical solution of first-kind logarithmic-kernel integral equations on smooth open arcs', Mathematics of Computation, 56, pp. 119 - 139, http://dx.doi.org/10.1090/S0025-5718-1991-1052084-0

ATKINSON KE; SLOAN IH, 1991, 'THE NUMERICAL-SOLUTION OF 1ST-KIND LOGARITHMIC-KERNEL INTEGRAL-EQUATIONS ON SMOOTH OPEN ARCS', MATHEMATICS OF COMPUTATION, 56, pp. 119 - 139, http://dx.doi.org/10.2307/2008533

Disney S; Sloan IH, 1991, 'Error Bounds for the Method of Good Lattice Points', Mathematics of Computation, 56, pp. 257 - 257, http://dx.doi.org/10.2307/2008540

LIN Q; SLOAN IH; XIE R, 1990, 'EXTRAPOLATION OF THE ITERATD-COLLOCATION METHOD FOR INTEGRAL-EQUATIONS OF THE 2ND KIND', SIAM JOURNAL ON NUMERICAL ANALYSIS, 27, pp. 1535 - 1541, http://dx.doi.org/10.1137/0727090

Chandler GA; Sloan IH, 1990, 'Spline qualocation methods for boundary integral equations', Numerische Mathematik, 58, pp. 537 - 567, http://dx.doi.org/10.1007/BF01385639

SLOAN IH; LYNESS JN, 1990, 'LATTICE RULES - PROJECTION REGULARITY AND UNIQUE REPRESENTATIONS', MATHEMATICS OF COMPUTATION, 54, pp. 649 - 660, http://dx.doi.org/10.2307/2008504

Sloan IH; Walsh L, 1990, 'A computer search of rank-2 lattice rules for multidimensional quadrature', Mathematics of Computation, 54, pp. 281 - 302, http://dx.doi.org/10.1090/S0025-5718-1990-1001485-4

SLOAN IH; WALSH L, 1990, 'A COMPUTER-SEARCH OF RANK-2 LATTICE RULES FOR MULTIDIMENSIONAL QUADRATURE', MATHEMATICS OF COMPUTATION, 54, pp. 281 - 302, http://dx.doi.org/10.2307/2008695

NIEDERREITER H; SLOAN IH, 1990, 'LATTICE RULES FOR MULTIPLE INTEGRATION AND DISCREPANCY', MATHEMATICS OF COMPUTATION, 54, pp. 303 - 312, http://dx.doi.org/10.2307/2008696

Niederreiter H; Sloan IH, 1990, 'Lattice rules for multiple integration and discrepancy', Mathematics of Computation, 54, pp. 303 - 312, http://dx.doi.org/10.1090/S0025-5718-1990-0995212-4

Sloan IH; Lyness JN, 1990, 'Lattice rules: Projection regularity and unique representations', Mathematics of Computation, 54, pp. 649 - 660, http://dx.doi.org/10.1090/S0025-5718-1990-1011443-1

Anselone PM; Sloan IH, 1990, 'Spectral approximations for Wiener-Hopf operators', Journal of Integral Equations and Applications, 2, pp. 237 - 261, http://dx.doi.org/10.1216/JIE-1990-2-2-237

LYNESS JN; SLOAN IH, 1989, 'SOME PROPERTIES OF RANK-2 LATTICE RULES', MATHEMATICS OF COMPUTATION, 53, pp. 627 - 637, http://dx.doi.org/10.2307/2008725

YAN Y; SLOAN IH, 1989, 'MESH GRADING FOR INTEGRAL-EQUATIONS OF THE 1ST KIND WITH LOGARITHMIC KERNEL', SIAM JOURNAL ON NUMERICAL ANALYSIS, 26, pp. 574 - 587, http://dx.doi.org/10.1137/0726034

Amini S; Sloan IH, 1989, 'Collocation methods for second kind integral equations with non-compact operators', Journal of Integral Equations and Applications, 2, pp. 1 - 30, http://dx.doi.org/10.1216/JIE-1989-2-1-1

Lyness JN; Sloan IH, 1989, 'Some properties of rank-2 lattice rules', Mathematics of Computation, 53, pp. 627 - 637, http://dx.doi.org/10.1090/S0025-5718-1989-0982369-6

Sloan IH; Lyness JN, 1989, 'The representation of lattice quadrature rules as multiple sums', Mathematics of Computation, 52, pp. 81 - 94, http://dx.doi.org/10.1090/S0025-5718-1989-0947468-3

SLOAN IH; LYNESS JN, 1989, 'THE REPRESENTATION OF LATTICE QUADRATURE-RULES AS MULTIPLE SUMS', MATHEMATICS OF COMPUTATION, 52, pp. 81 - 94, http://dx.doi.org/10.2307/2008654

Sloan IH; Wendland WL, 1989, 'A quadrature based apporach to improving the collocation method for splines of even degree', Zeitschrift für Analysis und ihre Anwendungen, 8, pp. 361 - 376

Sloan IH, 1988, 'A quadrature-based approach to improving the collocation method', Numerische Mathematik, 54, pp. 41 - 56, http://dx.doi.org/10.1007/BF01403890

Anselone PM; Sloan IH, 1988, 'Numerical solutions of integral equations on the half line II. The Wiener-Hopf case', Journal of Integral Equations and Applications, 1, pp. 203 - 225, http://dx.doi.org/10.1216/JIE-1988-1-2-203

Yan Y; Sloan LH, 1988, 'On integral equations of the first kind with logarithmic kernels', Journal of Integral Equations and Applications, 1, pp. 549 - 579, http://dx.doi.org/10.1216/JIE-1988-1-4-549

Sloan IH; Spence A, 1988, 'The galerkin method for integral equations of the first kind with logarithmic kernel: Applications', IMA Journal of Numerical Analysis, 8, pp. 123 - 140, http://dx.doi.org/10.1093/imanum/8.1.123

Sloan IH; Spence A, 1988, 'The galerkin method for integral equations of the first kind with logarithmic kernel: Theory', IMA Journal of Numerical Analysis, 8, pp. 105 - 122, http://dx.doi.org/10.1093/imanum/8.1.105

Anselone PM; Sloan IH, 1987, 'Numerical solutions of integral equations on the half line - I. The compact case', Numerische Mathematik, 51, pp. 599 - 614, http://dx.doi.org/10.1007/BF01400172

DEHOOG F; SLOAN IH, 1987, 'THE FINITE-SECTION APPROXIMATION FOR INTEGRAL-EQUATIONS ON THE HALF-LINE', JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 28, pp. 415 - 434, http://dx.doi.org/10.1017/S0334270000005506

Kumar S; Sloan IH, 1987, 'A new collocation type method for hammerstein integral equations', Mathematics of Computation, 48, pp. 585 - 593, http://dx.doi.org/10.1090/S0025-5718-1987-0878692-4

Sloan IH; Kachoyan PJ, 1987, 'LATTICE METHODS FOR MULTIPLE INTEGRATION: THEORY, ERROR ANALYSIS AND EXAMPLES.', SIAM Journal on Numerical Analysis, 24, pp. 116 - 128, http://dx.doi.org/10.1137/0724010

Sloan IH; Osborn TR, 1987, 'Multiple integration over bounded and unbounded regions', Journal of Computational and Applied Mathematics, 17, pp. 181 - 196, http://dx.doi.org/10.1016/0377-0427(87)90046-X

Kumar S; Sloan IH, 1987, 'A New Collocation-Type Method for Hammerstein Integral Equations', Mathematics of Computation, 48, pp. 585 - 585, http://dx.doi.org/10.1090/S0025-5718-1987-0878692-4

SLOAN IH; SPENCE A, 1986, 'INTEGRAL-EQUATIONS ON THE HALF-LINE - A MODIFIED FINITE-SECTION APPROXIMATION', MATHEMATICS OF COMPUTATION, 47, pp. 589 - 595, http://dx.doi.org/10.2307/2008174

SLOAN IH; THOMEE V, 1986, 'TIME DISCRETIZATION OF AN INTEGRODIFFERENTIAL EQUATION OF PARABOLIC TYPE', SIAM JOURNAL ON NUMERICAL ANALYSIS, 23, pp. 1052 - 1061, http://dx.doi.org/10.1137/0723073

Joe S; Sloan IH, 1986, 'On Bateman's method for second kind integral equations', Numerische Mathematik, 49, pp. 499 - 510, http://dx.doi.org/10.1007/BF01389702

Sloan IH; Spence A, 1986, 'Projection methods for integral equations on the half-line', IMA Journal of Numerical Analysis, 6, pp. 153 - 172, http://dx.doi.org/10.1093/imanum/6.2.153

Sloan IH; Spence A, 1986, 'Integral equations on the half-line: A modified finite-section approximation', Mathematics of Computation, 47, pp. 589 - 595, http://dx.doi.org/10.1090/S0025-5718-1986-0856704-0

Anselone PM; Sloan IH, 1985, 'INTEGRAL EQUATIONS ON THE HALF LINE.', Journal of integral equations, 9, pp. 3 - 23

Graham IG; Joe S; Sloan LH, 1985, 'Iterated galerkin versus iterated collocation for integral equations of the second kind', IMA Journal of Numerical Analysis, 5, pp. 355 - 369, http://dx.doi.org/10.1093/imanum/5.3.355

SLOAN IH; THOMEE V, 1985, 'SUPERCONVERGENCE OF THE GALERKIN ITERATES FOR INTEGRAL-EQUATIONS OF THE 2ND KIND', JOURNAL OF INTEGRAL EQUATIONS, 9, pp. 1 - 23, https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:A1985ALK2600001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=891bb5ab6ba270e68a29b250adbe88d1

Sloan IH, 1984, 'Four variants of the galerkin method for integral equations of the second kind', IMA Journal of Numerical Analysis, 4, pp. 9 - 17, http://dx.doi.org/10.1093/imanum/4.1.9

Rabinowitz P; Sloan IH, 1984, 'PRODUCT INTEGRATION IN THE PRESENCE OF A SINGULARITY.', SIAM Journal on Numerical Analysis, 21, pp. 149 - 166, http://dx.doi.org/10.1137/0721010

Sloan IH, 1983, 'Nonpolynomial interpolation', Journal of Approximation Theory, 39, pp. 97 - 117, http://dx.doi.org/10.1016/0021-9045(83)90085-0

ATKINSON K; GRAHAM I; SLOAN I, 1983, 'PIECEWISE CONTINUOUS COLLOCATION FOR INTEGRAL-EQUATIONS', SIAM JOURNAL ON NUMERICAL ANALYSIS, 20, pp. 172 - 186, http://dx.doi.org/10.1137/0720012

Smith WE; Sloan IH; Opie AH, 1983, 'Product integration over infinite intervals i. rules based on the zeros of hermite polynomials', Mathematics of Computation, 40, pp. 519 - 535, http://dx.doi.org/10.1090/S0025-5718-1983-0689468-1

Smith WE; Sloan IH; Opie AH, 1983, 'Product Integration Over Infinite Intervals I. Rules Based on the Zeros of Hermite Polynomials', Mathematics of Computation, 40, pp. 519 - 519, http://dx.doi.org/10.2307/2007528

SLOAN IH; SMITH WE, 1982, 'PROPERTIES OF INTERPOLATORY PRODUCT INTEGRATION RULES', SIAM JOURNAL ON NUMERICAL ANALYSIS, 19, pp. 427 - 442, http://dx.doi.org/10.1137/0719027


Back to profile page