Select Publications

Book Chapters

Gilbert AD; Graham IG; Scheichl R; Sloan IH, 2020, 'Bounding the Spectral Gap for an Elliptic Eigenvalue Problem with Uniformly Bounded Stochastic Coefficients', in 2018 MATRIX Annals, Springer International Publishing, pp. 29 - 43, http://dx.doi.org/10.1007/978-3-030-38230-8_3

Cools R; Kuo FY; Sloan IH; Nuyens D, 2020, 'Lattice algorithms for multivariate approximation in periodic spaces with general weight parameters', in Brenner SC; Shparlinski I; Shu C-W; Szyld D (ed.), 75 Years of Mathematics of Computation, American Mathematical Society, pp. 93 - 113, http://dx.doi.org/10.1090/conm/754/15150

Kazashi Y; Sloan IH, 2020, 'Worst-Case Error for Unshifted Lattice Rules Without Randomisation', in 2018 MATRIX Annals, Springer International Publishing, pp. 79 - 96, http://dx.doi.org/10.1007/978-3-030-38230-8_6

Hesse K; Sloan IH; Womersley RS, 2015, 'Numerical integration on the sphere', in Handbook of Geomathematics: Second Edition, pp. 2671 - 2710, http://dx.doi.org/10.1007/978-3-642-54551-1_40

Hesse K; Sloan IH; Womersley RS, 2015, 'Numerical Integration on the Sphere', in Handbook of Geomathematics, Springer Berlin Heidelberg, pp. 1 - 35, http://dx.doi.org/10.1007/978-3-642-27793-1_40-3

Sloan IH, 2015, 'Quasi-Monte Carlo Methods', in Encyclopedia of Applied and Computational Mathematics, Springer Berlin Heidelberg, pp. 1201 - 1203, http://dx.doi.org/10.1007/978-3-540-70529-1_391

Hesse K; Sloan IH; Womersley RS, 2013, 'Numerical Integration on the Sphere', in Handbook of Geomathematics, Springer Berlin Heidelberg, pp. 1 - 35, http://dx.doi.org/10.1007/978-3-642-27793-1_40-2

Hesse K; Sloan IH; Womersley RS, 2010, 'Numerical Integration on the Sphere', in Freeden W; Nashed MZ; Sonar T (ed.), Handbook of Geomathematics, edn. 1st, Springer, Berlin, pp. 1187 - 1220

Hesse K; Sloan IH; Womersley RS, 2010, 'Numerical Integration on the Sphere', in Handbook of Geomathematics, Springer Berlin Heidelberg, pp. 1185 - 1219, http://dx.doi.org/10.1007/978-3-642-01546-5_40

Sloan IH, 2009, 'How high is high-dimensional?', in Novak E; Sloan IH; Traub JF; Wozniakowski H (ed.), Essays on the Complexity of Continuous Problems, European Mathematical Society, Zurich, pp. 73 - 88, http://dx.doi.org/10.4171/069-1/4

Kuo FY; Sloan IH; Woźniakowski H, 2006, 'Lattice Rules for Multivariate Approximation in the Worst Case Setting', in Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 289 - 330, http://dx.doi.org/10.1007/3-540-31186-6_18

Hesse K; Sloan IH, 2006, 'Hyperinterpolation on the sphere', in Govil NK; Mhasker HN; Mohapatra RN; Nashed Z; Szabados J (ed.), Frontiers in interpolation and approximation, edn. Original, Chapman & Hall/CRC, USA, pp. 213 - 248

Sloan IH; Womersley RS, 1999, 'The uniform error of hyperinterpolation on the sphere', in Jetter K; Haussmann W; Reimer M (ed.), Multivariate Approximation, Wiley-VCH, pp. 289 - 306

Sloan IH, 1995, 'Boundary element methods', in Theory and numerics of ordinary and partial differential equations, edn. Original, Clarendon Press, Oxford, UK, pp. 143 - 180

Sloan IH, 1990, 'Superconvergence', in Golberg M (ed.), Numerical Solution of Integral Equations, Plenum Press, pp. 35 - 70

Sloan IH; Walsh L, 1988, 'Lattice Rules — Classification and Searches', in International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique, Birkhäuser Basel, pp. 251 - 260, http://dx.doi.org/10.1007/978-3-0348-6398-8_23

Sloan IH, 1988, 'Superconvergence in the collocation and qualocation methods', in Agarwal R (ed.), Numerical Mathematics, Birkhauser Verlag, pp. 429 - 441

Sloan IH; Spence A, 1985, 'Wiener-Hopf intergal equations: finite-section approximation and projection methods', in Hammerlin G; Hoffmann K-H (ed.), Constructive Methods for Practical Treatment of Integral Equations, Birkhauser Verlag, pp. 256 - 272

Sloan IH, 1982, 'Superconvergence and the Galerkin Method for Integral Equations of the Second Kind', in Baker CT H; Miller GF (ed.), Treatment of Integral Equations by Numerical Methods, Academic Press, pp. 197 - 207

SLOAN IH, 1981, 'MATHEMATICAL AND COMPUTATIONAL METHODS', in The Few Body Problem, Elsevier, pp. 365 - 374, http://dx.doi.org/10.1016/b978-1-4832-2896-9.50034-x

Sloan IH, 1980, 'A Review of Numerical Methods for Integral Equations of the Second Kind', in Anderssen RS; de Hoog F; Lukas M (ed.), The Application and Numerical Solution of Integral Equations, Sijthoff and Noordhoff, pp. 51 - 74

Brady TJ; Sloan IH, 1972, 'Variational approach to breakup calculations in the Amado model', in Slaus I; Moszkowski SA; Haddock RP; van Oers WTH (ed.), Few Particle Problems in the Nuclear Interaction, North Holland/American Elsevier, Amsterdam, pp. 364 - 367

Cahill RT; Sloan IH, 1970, 'Neutron-deuteron breakup with Amado's model', in McKee JS C; Rolph PM (ed.), The Three-Body Problem, North Holland, Amsterdam, pp. 265 - 274

Sloan IH; Massey HSW, 1964, 'The exchange-polarization approximation for elastic scattering of slow electrons by atoms and ions: electron scattering by helum ions.', in McDowell MR C (ed.), Atomic Collision Processes, North Holland, Amsterdam


Back to profile page