ORCID as entered in ROS

Select Publications
Sloan IH, 2018, A fortunate scientific life, http://dx.doi.org/10.1007/978-3-319-72456-0
, 2009, Essays on the Complexity of Continuous Problems, Sloan IH; Novak E; Wozniakowski H; Traub JF, (eds.), European Mathematical Society, Zurich
Jeltsch R; Li TT; Sloan IH, 2007, Preface
Jeltsch R; Li TT; Sloan IH, 2007, Some topics in industrial and applied mathematics, http://dx.doi.org/10.1142/6552
Sloan IH; Joe S, 1994, Lattice methods for multiple integration, Oxford University Press, https://global.oup.com/academic/product/lattice-methods-for-multiple-integration-9780198534723?cc=au&lang=en&
Kuo FY; Mo W; Nuyens D; Sloan IH; Srikumar A, 2024, 'Comparison of Two Search Criteria for Lattice-Based Kernel Approximation', in , pp. 413 - 429, http://dx.doi.org/10.1007/978-3-031-59762-6_20
Kaarnioja V; Kuo FY; Sloan IH, 2024, 'Lattice-Based Kernel Approximation and Serendipitous Weights for Parametric PDEs in Very High Dimensions', in , pp. 81 - 103, http://dx.doi.org/10.1007/978-3-031-59762-6_4
Gilbert AD; Kuo FY; Sloan IH; Srikumar A, 2024, 'Theory and Construction of Quasi-Monte Carlo Rules for Asian Option Pricing and Density Estimation', in , pp. 277 - 295, http://dx.doi.org/10.1007/978-3-031-59762-6_13
Gilbert AD; Kuo FY; Sloan IH, 2022, 'Preintegration is Not Smoothing When Monotonicity Fails', in Advances in Modeling and Simulation: Festschrift for Pierre L'Ecuyer, pp. 169 - 191, http://dx.doi.org/10.1007/978-3-031-10193-9_9
Gilbert AD; Graham IG; Scheichl R; Sloan IH, 2020, 'Bounding the Spectral Gap for an Elliptic Eigenvalue Problem with Uniformly Bounded Stochastic Coefficients', in MATRIX Book Series, Springer International Publishing, pp. 29 - 43, http://dx.doi.org/10.1007/978-3-030-38230-8_3
Cools R; Kuo FY; Sloan IH; Nuyens D, 2020, 'Lattice algorithms for multivariate approximation in periodic spaces with general weight parameters', in Brenner SC; Shparlinski I; Shu C-W; Szyld D (ed.), 75 Years of Mathematics of Computation, American Mathematical Society, pp. 93 - 113, http://dx.doi.org/10.1090/conm/754/15150
Kazashi Y; Sloan IH, 2020, 'Worst-Case Error for Unshifted Lattice Rules Without Randomisation', in MATRIX Book Series, Springer International Publishing, pp. 79 - 96, http://dx.doi.org/10.1007/978-3-030-38230-8_6
Hesse K; Sloan IH; Womersley RS, 2015, 'Numerical integration on the sphere', in Handbook of Geomathematics: Second Edition, Springer Nature, pp. 2671 - 2710, http://dx.doi.org/10.1007/978-3-642-54551-1_40
Hesse K; Sloan IH; Womersley RS, 2015, 'Numerical Integration on the Sphere', in Handbook of Geomathematics, Springer Berlin Heidelberg, pp. 1 - 35, http://dx.doi.org/10.1007/978-3-642-27793-1_40-3
Sloan IH, 2015, 'Quasi-Monte Carlo Methods', in Encyclopedia of Applied and Computational Mathematics, Springer Berlin Heidelberg, pp. 1201 - 1203, http://dx.doi.org/10.1007/978-3-540-70529-1_391
Hesse K; Sloan IH; Womersley RS, 2013, 'Numerical Integration on the Sphere', in Handbook of Geomathematics, Springer Berlin Heidelberg, pp. 1 - 35, http://dx.doi.org/10.1007/978-3-642-27793-1_40-2
Hesse K; Sloan IH; Womersley RS, 2010, 'Numerical Integration on the Sphere', in Freeden W; Nashed MZ; Sonar T (ed.), Handbook of Geomathematics, Springer, Berlin, pp. 1187 - 1220
Hesse K; Sloan IH; Womersley RS, 2010, 'Numerical Integration on the Sphere', in Handbook of Geomathematics, Springer Berlin Heidelberg, pp. 1185 - 1219, http://dx.doi.org/10.1007/978-3-642-01546-5_40
Sloan IH, 2009, 'How high is high-dimensional?', in Novak E; Sloan IH; Traub JF; Wozniakowski H (ed.), Essays on the Complexity of Continuous Problems, European Mathematical Society, Zurich, pp. 73 - 88
Kuo FY; Sloan IH; Woźniakowski H, 2006, 'Lattice Rules for Multivariate Approximation in the Worst Case Setting', in Monte Carlo and Quasi-Monte Carlo Methods 2004, Springer Nature, pp. 289 - 330, http://dx.doi.org/10.1007/3-540-31186-6_18
Hesse K; Sloan IH, 2006, 'Hyperinterpolation on the sphere', in Govil NK; Mhasker HN; Mohapatra RN; Nashed Z; Szabados J (ed.), Frontiers in interpolation and approximation, Chapman & Hall/CRC, USA, pp. 213 - 248
Mauersberger D; Sloan IH, 1999, 'A Simplified Approach to the Semi-discrete Galerkin Method for the Single-layer Equation for a Plate', in Bonnet M; Sandig AM; Wendland WL (ed.), Mathematical Aspects of Boundary Element Methods, pp. 178 - 190, http://dx.doi.org/10.1201/9780429332449-15
Sloan IH; Womersley RS, 1999, 'The uniform error of hyperinterpolation on the sphere', in Jetter K; Haussmann W; Reimer M (ed.), Multivariate Approximation, Wiley-VCH, pp. 289 - 306
Sloan IH, 1995, 'Boundary element methods', in Theory and numerics of ordinary and partial differential equations, Clarendon Press, Oxford, UK, pp. 143 - 180
Sloan IH, 1990, 'Superconvergence', in Golberg M (ed.), Numerical Solution of Integral Equations, Plenum Press, pp. 35 - 70
Sloan IH; Walsh L, 1988, 'Lattice Rules — Classification and Searches', in International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique, Birkhäuser Basel, pp. 251 - 260, http://dx.doi.org/10.1007/978-3-0348-6398-8_23
Sloan IH, 1988, 'Superconvergence in the collocation and qualocation methods', in Agarwal R (ed.), Numerical Mathematics, Birkhauser Verlag, pp. 429 - 441
Sloan IH; Spence A, 1985, 'Wiener-Hopf intergal equations: finite-section approximation and projection methods', in Hammerlin G; Hoffmann K-H (ed.), Constructive Methods for Practical Treatment of Integral Equations, Birkhauser Verlag, pp. 256 - 272
Sloan IH, 1982, 'Superconvergence and the Galerkin Method for Integral Equations of the Second Kind', in Baker CTH; Miller GF (ed.), Treatment of Integral Equations by Numerical Methods, Academic Press, pp. 197 - 207
SLOAN IH, 1981, 'MATHEMATICAL AND COMPUTATIONAL METHODS', in The Few Body Problem, Elsevier, pp. 365 - 374, http://dx.doi.org/10.1016/b978-1-4832-2896-9.50034-x
Sloan IH, 1980, 'A Review of Numerical Methods for Integral Equations of the Second Kind', in Anderssen RS; de Hoog F; Lukas M (ed.), The Application and Numerical Solution of Integral Equations, Sijthoff and Noordhoff, pp. 51 - 74
Brady TJ; Sloan IH, 1972, 'Variational approach to breakup calculations in the Amado model', in Slaus I; Moszkowski SA; Haddock RP; van Oers WTH (ed.), Few Particle Problems in the Nuclear Interaction, North Holland/American Elsevier, Amsterdam, pp. 364 - 367
Cahill RT; Sloan IH, 1970, 'Neutron-deuteron breakup with Amado's model', in McKee JSC; Rolph PM (ed.), The Three-Body Problem, North Holland, Amsterdam, pp. 265 - 274
Sloan IH; Massey HSW, 1964, 'The exchange-polarization approximation for elastic scattering of slow electrons by atoms and ions: electron scattering by helum ions.', in McDowell MRC (ed.), Atomic Collision Processes, North Holland, Amsterdam
Sloan IH; Kaarnioja V, 2025, 'Doubling the rate: improved error bounds for orthogonal projection with application to interpolation', BIT Numerical Mathematics, 65, http://dx.doi.org/10.1007/s10543-024-01049-2
Brauchart JS; Grabner PJ; Sloan IH; Womersley RS, 2024, 'Needlets liberated', Applied and Computational Harmonic Analysis, 73, http://dx.doi.org/10.1016/j.acha.2024.101693
Alodat T; Le Gia QT; Sloan IH, 2024, 'On approximation for time-fractional stochastic diffusion equations on the unit sphere', Journal of Computational and Applied Mathematics, 446, http://dx.doi.org/10.1016/j.cam.2024.115863
Brown B; Griebel M; Kuo FY; Sloan IANH, 2024, 'ON THE EXPECTED UNIFORM ERROR OF BROWNIAN MOTION APPROXIMATED BY THE LÉVY-CIESIELSKI CONSTRUCTION', Bulletin of the Australian Mathematical Society, 109, pp. 581 - 593, http://dx.doi.org/10.1017/S0004972723000850
Guth PA; Kaarnioja V; Kuo FY; Schillings C; Sloan IH, 2024, 'Parabolic PDE-constrained optimal control under uncertainty with entropic risk measure using quasi-Monte Carlo integration', Numerische Mathematik, 156, pp. 565 - 608, http://dx.doi.org/10.1007/s00211-024-01397-9
Hakula H; Harbrecht H; Kaarnioja V; Kuo FY; Sloan IH, 2024, 'Uncertainty quantification for random domains using periodic random variables', Numerische Mathematik, 156, pp. 273 - 317, http://dx.doi.org/10.1007/s00211-023-01392-6
Hamann J; Le Gia QT; Sloan IH; Womersley RS, 2024, 'Removing the mask—reconstructing a real-valued field on the sphere from a masked field by spherical fourier analysis', SIAM Journal on Imaging Sciences, 17, pp. 1820 - 1843, http://dx.doi.org/10.1137/23M1603157
Ganesh M; Kuo FY; Sloan IH, 2024, 'Quasi--Monte Carlo Finite Element Analysis for Wave Propagation in Heterogeneous Random Media (Vol 9, pg 106, 2021)', SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 12, pp. 212 - 212, http://dx.doi.org/10.1137/23M1624609
Zhong M; Gia QTL; Sloan IH, 2023, 'A Multiscale RBF Method for Severely Ill-Posed Problems on Spheres', Journal of Scientific Computing, 94, http://dx.doi.org/10.1007/s10915-022-02046-9
Gilbert AD; Kuo FY; Sloan IH, 2023, 'ANALYSIS OF PREINTEGRATION FOLLOWED BY QUASI-MONTE CARLO INTEGRATION FOR DISTRIBUTION FUNCTIONS AND DENSITIES', SIAM Journal on Numerical Analysis, 61, pp. 135 - 166, http://dx.doi.org/10.1137/21M146658X
Gilbert AD; Kuo FY; Sloan IH, 2022, 'EQUIVALENCE BETWEEN SOBOLEV SPACES OF FIRST-ORDER DOMINATING MIXED SMOOTHNESS AND UNANCHORED ANOVA SPACES ON R
Kaarnioja V; Kazashi Y; Kuo FY; Nobile F; Sloan IH, 2022, 'Fast approximation by periodic kernel-based lattice-point interpolation with application in uncertainty quantification', Numerische Mathematik, 150, pp. 33 - 77, http://dx.doi.org/10.1007/s00211-021-01242-3
Hartung T; Jansen K; Kuo FY; Leövey H; Nuyens D; Sloan IH, 2021, 'Lattice meets lattice: Application of lattice cubature to models in lattice gauge theory', Journal of Computational Physics, 443, http://dx.doi.org/10.1016/j.jcp.2021.110527
Hamann J; Le Gia QT; Sloan IH; Wang YG; Womersley RS, 2021, 'A new probe of Gaussianity and isotropy with application to cosmic microwave background maps', International Journal of Modern Physics C, 32, http://dx.doi.org/10.1142/S0129183121500844
Guth PA; Kaarnioja V; Kuo FY; Schillings C; Sloan IH, 2021, 'A quasi-monte carlo method for optimal control under uncertainty', SIAM-ASA Journal on Uncertainty Quantification, 9, pp. 354 - 383, http://dx.doi.org/10.1137/19M1294952
Gilbert AD; Kuo FY; Sloan IH, 2021, 'Equivalence between Sobolev spaces of first-order dominating mixed smoothness and unanchored ANOVA spaces on $\mathbb{R}^d$', , http://arxiv.org/abs/2103.16075v3