Select Publications

Books

Sloan IH, 2018, A fortunate scientific life, http://dx.doi.org/10.1007/978-3-319-72456-0

, 2009, Essays on the Complexity of Continuous Problems, Sloan IH; Novak E; Wozniakowski H; Traub JF, (eds.), European Mathematical Society, Zurich

Jeltsch R; Li TT; Sloan IH, 2007, Preface

Jeltsch R; Li TT; Sloan IH, 2007, Some topics in industrial and applied mathematics, http://dx.doi.org/10.1142/6552

Sloan IH; Joe S, 1994, Lattice methods for multiple integration, Oxford University Press, https://global.oup.com/academic/product/lattice-methods-for-multiple-integration-9780198534723?cc=au&lang=en&

Book Chapters

Kuo FY; Mo W; Nuyens D; Sloan IH; Srikumar A, 2024, 'Comparison of Two Search Criteria for Lattice-Based Kernel Approximation', in , pp. 413 - 429, http://dx.doi.org/10.1007/978-3-031-59762-6_20

Kaarnioja V; Kuo FY; Sloan IH, 2024, 'Lattice-Based Kernel Approximation and Serendipitous Weights for Parametric PDEs in Very High Dimensions', in , pp. 81 - 103, http://dx.doi.org/10.1007/978-3-031-59762-6_4

Gilbert AD; Kuo FY; Sloan IH; Srikumar A, 2024, 'Theory and Construction of Quasi-Monte Carlo Rules for Asian Option Pricing and Density Estimation', in , pp. 277 - 295, http://dx.doi.org/10.1007/978-3-031-59762-6_13

Gilbert AD; Kuo FY; Sloan IH, 2022, 'Preintegration is Not Smoothing When Monotonicity Fails', in Advances in Modeling and Simulation: Festschrift for Pierre L'Ecuyer, pp. 169 - 191, http://dx.doi.org/10.1007/978-3-031-10193-9_9

Gilbert AD; Graham IG; Scheichl R; Sloan IH, 2020, 'Bounding the Spectral Gap for an Elliptic Eigenvalue Problem with Uniformly Bounded Stochastic Coefficients', in MATRIX Book Series, Springer International Publishing, pp. 29 - 43, http://dx.doi.org/10.1007/978-3-030-38230-8_3

Cools R; Kuo FY; Sloan IH; Nuyens D, 2020, 'Lattice algorithms for multivariate approximation in periodic spaces with general weight parameters', in Brenner SC; Shparlinski I; Shu C-W; Szyld D (ed.), 75 Years of Mathematics of Computation, American Mathematical Society, pp. 93 - 113, http://dx.doi.org/10.1090/conm/754/15150

Kazashi Y; Sloan IH, 2020, 'Worst-Case Error for Unshifted Lattice Rules Without Randomisation', in MATRIX Book Series, Springer International Publishing, pp. 79 - 96, http://dx.doi.org/10.1007/978-3-030-38230-8_6

Hesse K; Sloan IH; Womersley RS, 2015, 'Numerical integration on the sphere', in Handbook of Geomathematics: Second Edition, Springer Nature, pp. 2671 - 2710, http://dx.doi.org/10.1007/978-3-642-54551-1_40

Hesse K; Sloan IH; Womersley RS, 2015, 'Numerical Integration on the Sphere', in Handbook of Geomathematics, Springer Berlin Heidelberg, pp. 1 - 35, http://dx.doi.org/10.1007/978-3-642-27793-1_40-3

Sloan IH, 2015, 'Quasi-Monte Carlo Methods', in Encyclopedia of Applied and Computational Mathematics, Springer Berlin Heidelberg, pp. 1201 - 1203, http://dx.doi.org/10.1007/978-3-540-70529-1_391

Hesse K; Sloan IH; Womersley RS, 2013, 'Numerical Integration on the Sphere', in Handbook of Geomathematics, Springer Berlin Heidelberg, pp. 1 - 35, http://dx.doi.org/10.1007/978-3-642-27793-1_40-2

Hesse K; Sloan IH; Womersley RS, 2010, 'Numerical Integration on the Sphere', in Freeden W; Nashed MZ; Sonar T (ed.), Handbook of Geomathematics, Springer, Berlin, pp. 1187 - 1220

Hesse K; Sloan IH; Womersley RS, 2010, 'Numerical Integration on the Sphere', in Handbook of Geomathematics, Springer Berlin Heidelberg, pp. 1185 - 1219, http://dx.doi.org/10.1007/978-3-642-01546-5_40

Sloan IH, 2009, 'How high is high-dimensional?', in Novak E; Sloan IH; Traub JF; Wozniakowski H (ed.), Essays on the Complexity of Continuous Problems, European Mathematical Society, Zurich, pp. 73 - 88

Kuo FY; Sloan IH; Woźniakowski H, 2006, 'Lattice Rules for Multivariate Approximation in the Worst Case Setting', in Monte Carlo and Quasi-Monte Carlo Methods 2004, Springer Nature, pp. 289 - 330, http://dx.doi.org/10.1007/3-540-31186-6_18

Hesse K; Sloan IH, 2006, 'Hyperinterpolation on the sphere', in Govil NK; Mhasker HN; Mohapatra RN; Nashed Z; Szabados J (ed.), Frontiers in interpolation and approximation, Chapman & Hall/CRC, USA, pp. 213 - 248

Sloan IH; Womersley RS, 1999, 'The uniform error of hyperinterpolation on the sphere', in Jetter K; Haussmann W; Reimer M (ed.), Multivariate Approximation, Wiley-VCH, pp. 289 - 306

Sloan IH, 1995, 'Boundary element methods', in Theory and numerics of ordinary and partial differential equations, Clarendon Press, Oxford, UK, pp. 143 - 180

Sloan IH, 1990, 'Superconvergence', in Golberg M (ed.), Numerical Solution of Integral Equations, Plenum Press, pp. 35 - 70

Sloan IH; Walsh L, 1988, 'Lattice Rules — Classification and Searches', in International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique, Birkhäuser Basel, pp. 251 - 260, http://dx.doi.org/10.1007/978-3-0348-6398-8_23

Sloan IH, 1988, 'Superconvergence in the collocation and qualocation methods', in Agarwal R (ed.), Numerical Mathematics, Birkhauser Verlag, pp. 429 - 441

Sloan IH; Spence A, 1985, 'Wiener-Hopf intergal equations: finite-section approximation and projection methods', in Hammerlin G; Hoffmann K-H (ed.), Constructive Methods for Practical Treatment of Integral Equations, Birkhauser Verlag, pp. 256 - 272

Sloan IH, 1982, 'Superconvergence and the Galerkin Method for Integral Equations of the Second Kind', in Baker CTH; Miller GF (ed.), Treatment of Integral Equations by Numerical Methods, Academic Press, pp. 197 - 207

SLOAN IH, 1981, 'MATHEMATICAL AND COMPUTATIONAL METHODS', in The Few Body Problem, Elsevier, pp. 365 - 374, http://dx.doi.org/10.1016/b978-1-4832-2896-9.50034-x

Sloan IH, 1980, 'A Review of Numerical Methods for Integral Equations of the Second Kind', in Anderssen RS; de Hoog F; Lukas M (ed.), The Application and Numerical Solution of Integral Equations, Sijthoff and Noordhoff, pp. 51 - 74

Brady TJ; Sloan IH, 1972, 'Variational approach to breakup calculations in the Amado model', in Slaus I; Moszkowski SA; Haddock RP; van Oers WTH (ed.), Few Particle Problems in the Nuclear Interaction, North Holland/American Elsevier, Amsterdam, pp. 364 - 367

Cahill RT; Sloan IH, 1970, 'Neutron-deuteron breakup with Amado's model', in McKee JSC; Rolph PM (ed.), The Three-Body Problem, North Holland, Amsterdam, pp. 265 - 274

Sloan IH; Massey HSW, 1964, 'The exchange-polarization approximation for elastic scattering of slow electrons by atoms and ions: electron scattering by helum ions.', in McDowell MRC (ed.), Atomic Collision Processes, North Holland, Amsterdam

Journal articles

Brauchart JS; Grabner PJ; Sloan IH; Womersley RS, 2024, 'Needlets liberated', Applied and Computational Harmonic Analysis, 73, http://dx.doi.org/10.1016/j.acha.2024.101693

Hamann J; Le Gia QT; Sloan IH; Womersley RS, 2024, 'Removing the Mask—Reconstructing a Real-Valued Field on the Sphere from a Masked Field by Spherical Fourier Analysis', SIAM Journal on Imaging Sciences, 17, pp. 1820 - 1843, http://dx.doi.org/10.1137/23m1603157

Alodat T; Le Gia QT; Sloan IH, 2024, 'On approximation for time-fractional stochastic diffusion equations on the unit sphere', Journal of Computational and Applied Mathematics, 446, http://dx.doi.org/10.1016/j.cam.2024.115863

Brown B; Griebel M; Kuo FY; Sloan IANH, 2024, 'ON THE EXPECTED UNIFORM ERROR OF BROWNIAN MOTION APPROXIMATED BY THE LÉVY-CIESIELSKI CONSTRUCTION', Bulletin of the Australian Mathematical Society, 109, pp. 581 - 593, http://dx.doi.org/10.1017/S0004972723000850

Guth PA; Kaarnioja V; Kuo FY; Schillings C; Sloan IH, 2024, 'Parabolic PDE-constrained optimal control under uncertainty with entropic risk measure using quasi-Monte Carlo integration', Numerische Mathematik, 156, pp. 565 - 608, http://dx.doi.org/10.1007/s00211-024-01397-9

Hakula H; Harbrecht H; Kaarnioja V; Kuo FY; Sloan IH, 2024, 'Uncertainty quantification for random domains using periodic random variables', Numerische Mathematik, 156, pp. 273 - 317, http://dx.doi.org/10.1007/s00211-023-01392-6

Zhong M; Gia QTL; Sloan IH, 2023, 'A Multiscale RBF Method for Severely Ill-Posed Problems on Spheres', Journal of Scientific Computing, 94, http://dx.doi.org/10.1007/s10915-022-02046-9

Gilbert AD; Kuo FY; Sloan IH, 2023, 'ANALYSIS OF PREINTEGRATION FOLLOWED BY QUASI-MONTE CARLO INTEGRATION FOR DISTRIBUTION FUNCTIONS AND DENSITIES', SIAM Journal on Numerical Analysis, 61, pp. 135 - 166, http://dx.doi.org/10.1137/21M146658X

Gilbert AD; Kuo FY; Sloan IH, 2022, 'EQUIVALENCE BETWEEN SOBOLEV SPACES OF FIRST-ORDER DOMINATING MIXED SMOOTHNESS AND UNANCHORED ANOVA SPACES ON Rd', Mathematics of Computation, 91, pp. 1837 - 1869, http://dx.doi.org/10.1090/MCOM/3718

Kaarnioja V; Kazashi Y; Kuo FY; Nobile F; Sloan IH, 2022, 'Fast approximation by periodic kernel-based lattice-point interpolation with application in uncertainty quantification', Numerische Mathematik, 150, pp. 33 - 77, http://dx.doi.org/10.1007/s00211-021-01242-3

Hartung T; Jansen K; Kuo FY; Leövey H; Nuyens D; Sloan IH, 2021, 'Lattice meets lattice: Application of lattice cubature to models in lattice gauge theory', Journal of Computational Physics, 443, http://dx.doi.org/10.1016/j.jcp.2021.110527

Hamann J; Le Gia QT; Sloan IH; Wang YG; Womersley RS, 2021, 'A new probe of Gaussianity and isotropy with application to cosmic microwave background maps', International Journal of Modern Physics C, 32, http://dx.doi.org/10.1142/S0129183121500844

Guth PA; Kaarnioja V; Kuo FY; Schillings C; Sloan IH, 2021, 'A quasi-monte carlo method for optimal control under uncertainty', SIAM-ASA Journal on Uncertainty Quantification, 9, pp. 354 - 383, http://dx.doi.org/10.1137/19M1294952

Gilbert AD; Kuo FY; Sloan IH, 2021, 'Equivalence between Sobolev spaces of first-order dominating mixed smoothness and unanchored ANOVA spaces on $\mathbb{R}^d$', , http://arxiv.org/abs/2103.16075v3

Hesse K; Sloan IH; Womersley RS, 2021, 'Local RBF-based penalized least-squares approximation on the sphere with noisy scattered data', Journal of Computational and Applied Mathematics, 382, http://dx.doi.org/10.1016/j.cam.2020.113061

Sloan I, 2021, 'A marriage made in heaven — mathematics and computers', Journal and Proceedings of the Royal Society of New South Wales, 154, pp. 133 - 138, http://dx.doi.org/10.5962/p.361971

Ganesh M; Kuo FY; Sloan IH, 2021, 'Quasi-monte carlo finite element analysis for wave propagation in heterogeneous random media', SIAM-ASA Journal on Uncertainty Quantification, 9, pp. 106 - 134, http://dx.doi.org/10.1137/20M1334164


Back to profile page