ORCID as entered in ROS

Select Publications
2023, Flow Batteries: From Fundamentals to Applications: Volume 1, 2 and 3, http://dx.doi.org/10.1002/9783527832767
,2023, Preface
,2014, Advances in Batteries for Medium and Large-Scale Energy Storage, Menictas C; Skyllas-Kazacos M; Lim TM, (eds.), Woodhead Pub Limited
,2014, Advances in Batteries for Medium and Large-Scale Energy Storage: Types and Applications, http://dx.doi.org/10.1016/C2013-0-16429-X
,2014, Proceedings of 11th Australasian Aluminium Smelting Technology Conference,, Welch BJ; Skyllas-Kazacos M, (ed.), University of New South Wales, Sydney, Australia
,2005, Challenges in Mass Balance Control, TMS, USA
,2001, Proceedings of 7th Australasian Aluminium Smelting Technology Conference and Workshops, Skyllas-Kazacos M; Welch B, (ed.), Centre for Electrochemical and Minerals Processing, Sydney Australia
2023, 'The History of the
2023, 'Dynamic Modelling of Vanadium Flow Batteries for System Monitoring and Control', in Roth C; Noack J; Skyllas-Kazacos M (ed.), Flow Batteries, From Fundamentals to Applications, Wiley-VCH, pp. 443 - 462, http://dx.doi.org/10.1002/9783527832767
,2023, 'A Dynamic Coupled Mass and Thermal Model for the Top Chamber of the Aluminium Smelting Cells', in , pp. 67 - 76, http://dx.doi.org/10.1007/978-3-031-22532-1_9
,2023, 'A Smart Individual Anode Current Measurement System and Its Applications', in , pp. 43 - 51, http://dx.doi.org/10.1007/978-3-031-22532-1_6
,2023, 'History of Flow Batteries', in Flow Batteries: From Fundamentals to Applications: Volume 1, 2 and 3, pp. 29 - 52, http://dx.doi.org/10.1002/9783527832767.ch2
,2023, 'Monitoring Cell Conditions and Anode Freeze Dissolution with Model-Based Soft Sensor After Anode Change', in , pp. 87 - 94, http://dx.doi.org/10.1007/978-3-031-22532-1_11
,2023, 'Next-Generation Vanadium Flow Batteries', in Flow Batteries: From Fundamentals to Applications: Volume 1, 2 and 3, pp. 673 - 687, http://dx.doi.org/10.1002/9783527832767.ch30
,2023, 'The History of the UNSW All-Vanadium Flow Battery Development', in Flow Batteries: From Fundamentals to Applications: Volume 1, 2 and 3, pp. 509 - 538, http://dx.doi.org/10.1002/9783527832767.ch22
,2022, 'Secondary batteries: Redox flow battery—Vanadium Redox', in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier, http://dx.doi.org/10.1016/b978-0-323-96022-9.00010-4
,2018, 'Flow Batteries: Vanadium and Beyond', in Redox Flow Batteries - Fundamentals and Applications
,2017, 'Flow Batteries', in Redox Flow Batteries, CRC Press, pp. 327 - 354, http://dx.doi.org/10.1201/9781315152684-9
,2016, 'Modeling the mass and energy balance of different aluminium smelting cell technologies', in Light Metals 2012, pp. 929 - 934, http://dx.doi.org/10.1007/978-3-319-48179-1_161
,2016, 'Reduction of HF Emissions from the TRIMET Aluminum Smelter (Optimizing Dry Scrubber Operations and Its Impact on Process Operations)', in Essential Readings in Light Metals, Springer International Publishing, pp. 968 - 974, http://dx.doi.org/10.1007/978-3-319-48156-2_143
,2015, 'Redox Flow Batteries', in Moseley P; Garche J (ed.), Electrochemical Energy Storage for Renewable Sources and Grid Balancing, Elsevier, Amsterdam, pp. 309 - 336, https://books.google.com.au/books?hl=en&lr=&id=N0Z9AwAAQBAJ&oi=fnd&pg=PP1&dq=Electrochemical+Energy+Storage+for+Renewable+Sources+and+Grid+Balancing&ots=-3xObopTtv&sig=aAvNnXLM7XiWtnp6JCJJcMgbzPY#v=onepage&q=Electrochemical%20Energy%20Storage%20for%20Renewable%20Sources%20and%20Grid%20Balancing&f=false
,2015, 'Vanadium redox flow batteries (VRBs) for medium- and large-scale energy storage', in Advances in Batteries for Medium and Large-Scale Energy Storage: Types and Applications, pp. 329 - 386, http://dx.doi.org/10.1016/B978-1-78242-013-2.00010-8
,2015, 'Chapter 10 Vanadium redox flow batteries (VRBs) for medium- and large-scale energy storage', in Advances in Batteries for Medium and Large-Scale Energy Storage, Elsevier, pp. 329 - 386, http://dx.doi.org/10.1016/b978-1-78242-013-2.00010-8
,2015, 'Chapter 17 Redox Flow Batteries', in Electrochemical Energy Storage for Renewable Sources and Grid Balancing, Elsevier, pp. 309 - 336, http://dx.doi.org/10.1016/b978-0-444-62616-5.00017-6
,2014, 'Vanadium Redox Flow Batteries', in Menictas C; Skyllas-Kazacos M; Lim T (ed.), Advances in batteries for medium- and large-scale energy storage, Woodhead Pub Limited
,2014, 'Advanced Batteries and Improvements in Electrode Materials', in Electrochemically Enabled Sustainability, CRC Press, pp. 268 - 333, http://dx.doi.org/10.1201/b17062-11
2014, 'Physical Properties of Negative Half-Cell Electrolytes in the Vanadium Redox Flow Battery', in Electrochemically Enabled Sustainability, CRC Press, pp. 408 - 441, http://dx.doi.org/10.1201/b17062-14
2013, '12 Redox flow batteries for medium- to large-scale energy storage', in Electricity Transmission, Distribution and Storage Systems, Elsevier, pp. 398 - 441, http://dx.doi.org/10.1533/9780857097378.3.398
,2013, 'Contributor contact details', in Electricity Transmission, Distribution and Storage Systems, Elsevier, pp. xi - xiii, http://dx.doi.org/10.1016/b978-1-84569-784-6.50016-0
,2013, 'Redox Flow Batteries for Medium to Large Scale Energy Storage', in Melhem Z (ed.), Electricity Transmission, Distribution and Storage Systems, Woodhead Pub Limited, pp. 398 - 441
,2012, 'Modeling the Mass and Energy Balance of Different Aluminium Smelting Cell Technologies', in , Wiley, pp. 929 - 934, http://dx.doi.org/10.1002/9781118359259.ch161
,2010, '10 Electro-chemical energy storage technologies for wind energy systems', in Stand-Alone and Hybrid Wind Energy Systems, Elsevier, pp. 323 - 365, http://dx.doi.org/10.1533/9781845699628.2.323
,2010, 'Contributor contact details', in Stand-Alone and Hybrid Wind Energy Systems, Elsevier, pp. xiii - xv, http://dx.doi.org/10.1016/b978-1-84569-527-9.50018-4
,2010, 'Electro-chemical energy storage technologies for wind energy systems', in Kaldellis JK (ed.), Stand-alone and hybrid wind energy systems, Woodhead Publishing Limited, Oxford UK, pp. 323 - 326
,2009, 'Secondary Batteries - Flow Systems', in Encyclopedia of Electrochemical Power Sources, pp. 444 - 453, http://dx.doi.org/10.1016/B978-044452745-5.00177-5
,2009, 'Vandium Redox-Flow Batteries', in Dyer CK; Moseley PT; Ogumi Z; Rand DAJ; Scrosati B; Garche J (ed.), Encyclopedia of Electrochemical Power Sources, Elsevier BV, Amsterdam, pp. 444 - 453
,2023, 'A Three-Dimensional Hydraulic Stack Model for Redox Flow Batteries Considering Porosity Variations in Porous Felt Electrodes and Bypass Flow in Side Gaps', Batteries, 9, http://dx.doi.org/10.3390/batteries9070359
,2023, 'Hybrid Cooling-Based Thermal Management of Containerised Vanadium Flow Battery Systems in Photovoltaic Applications', Processes, 11, http://dx.doi.org/10.3390/pr11051431
,2023, 'Studies on Power Modulation of Aluminum Smelting Cells Based on a Discretized Mass and Thermal Dynamic Model', Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 54, pp. 562 - 577, http://dx.doi.org/10.1007/s11663-022-02709-w
,2023, 'Thermal Modelling and Simulation Studies of Containerised Vanadium Flow Battery Systems', Batteries, 9, http://dx.doi.org/10.3390/batteries9040196
,2022, 'Vanadium/Water Electrolyser for Recharge of Vanadium Oxygen Fuel Cells', ECS Meeting Abstracts, MA2022-02, pp. 49 - 49, http://dx.doi.org/10.1149/ma2022-02149mtgabs
,2022, '(Invited) Modelling and Simulation for the Search for New Active Materials for Redox Flow Batteries - Results of the International Project Sonar', ECS Meeting Abstracts, MA2022-01, pp. 1954 - 1954, http://dx.doi.org/10.1149/ma2022-01461954mtgabs
,2022, 'Techno-Economic Comparison of Different Organic Flow Batteries Based on Experimental Data Versus a Vanadium Flow Battery', ECS Meeting Abstracts, MA2022-01, pp. 470 - 470, http://dx.doi.org/10.1149/ma2022-013470mtgabs
,2022, 'The Influence of Electrochemical Treatment on Electrode Reactions for Vanadium Flow Batteries', ECS Meeting Abstracts, MA2022-01, pp. 461 - 461, http://dx.doi.org/10.1149/ma2022-013461mtgabs
,2022, 'Electrolyte flow rate control for vanadium redox flow batteries using the linear parameter varying framework', Journal of Process Control, 115, pp. 36 - 47, http://dx.doi.org/10.1016/j.jprocont.2022.04.021
,2022, 'Review - Highlights of UNSW All-Vanadium Redox Battery Development: 1983 to Present', Journal of the Electrochemical Society, 169, http://dx.doi.org/10.1149/1945-7111/ac7bab
,2022, 'Advanced Model-Based Estimation and Control of Alumina Concentration in an Aluminum Reduction Cell', JOM, 74, pp. 706 - 717, http://dx.doi.org/10.1007/s11837-021-05073-3
,2021, 'Modelling of Coupled Mass and Thermal Balances in Hall-Heroult Cells during Anode Change', Journal of the Electrochemical Society, 168, http://dx.doi.org/10.1149/1945-7111/ac41f6
,2021, 'Techno-economical Modeling and Simulations for Redox Flow Batteries', ECS Meeting Abstracts, MA2021-02, pp. 158 - 158, http://dx.doi.org/10.1149/ma2021-021158mtgabs
,2021, 'Dynamic model based membrane permeability estimation for online SOC imbalances monitoring of vanadium redox flow batteries', Journal of Energy Storage, 39, http://dx.doi.org/10.1016/j.est.2021.102688
,