ORCID as entered in ROS

Select Publications
Dick J; Feischl M; Schwab C, 2018, Improved Efficiency of a Multi-Index FEM for Computational Uncertainty Quantification, http://dx.doi.org/10.48550/arxiv.1806.04159
Dick J; Pillichshammer F; Suzuki K; Ullrich M; Yoshiki T, 2017, Digital net properties of a polynomial analogue of Frolov's construction, http://dx.doi.org/10.48550/arxiv.1712.06831
Dick J; Goda T; Yoshiki T, 2017, Richardson extrapolation of polynomial lattice rules, http://dx.doi.org/10.48550/arxiv.1707.03989
Dick J; Gantner RN; Gia QTL; Schwab C, 2016, Multilevel higher order Quasi-Monte Carlo Bayesian Estimation, http://dx.doi.org/10.48550/arxiv.1611.08324
Dick J; Pillichshammer F; Suzuki K; Ullrich M; Yoshiki T, 2016, Lattice based integration algorithms: Kronecker sequences and rank-1 lattices, http://dx.doi.org/10.48550/arxiv.1608.08687
Dick J; Irrgeher C; Leobacher G; Pillichshammer F, 2016, On the optimal order of integration in Hermite spaces with finite smoothness, http://dx.doi.org/10.48550/arxiv.1608.06061
Dick J; Hinrichs A; Markhasin L; Pillichshammer F, 2016, Discrepancy of second order digital sequences in function spaces with dominating mixed smoothness, http://dx.doi.org/10.48550/arxiv.1604.08713
Dick J; Gantner RN; Gia QTL; Schwab C, 2016, Higher order Quasi-Monte Carlo integration for Bayesian Estimation, http://dx.doi.org/10.48550/arxiv.1602.07363
Dick J; Goda T; Suzuki K; Yoshiki T, 2016, Construction of interlaced polynomial lattice rules for infinitely differentiable functions, http://dx.doi.org/10.48550/arxiv.1602.00793
Dick J; Hinrichs A; Markhasin L; Pillichshammer F, 2016, Optimal $L_p$-discrepancy bounds for second order digital sequences, http://dx.doi.org/10.48550/arxiv.1601.07281
Dick J; Gomez-Perez D; Pillichshammer F; Winterhof A, 2015, Digital inversive vectors can achieve strong polynomial tractability for the weighted star discrepancy and for multivariate integration, http://dx.doi.org/10.48550/arxiv.1512.06521
Dick J; Kuo FY; Gia QTL; Schwab C, 2015, Fast QMC matrix-vector multiplication, http://dx.doi.org/10.48550/arxiv.1501.06286
Dick J; Kritzer P; Leobacher G; Pillichshammer F, 2014, Numerical integration in $\log$-Korobov and $\log$-cosine spaces, http://dx.doi.org/10.48550/arxiv.1411.2715
Dick J; Gia QTL; Schwab C, 2014, Higher Order Quasi Monte-Carlo Integration in Uncertainty Quantification, http://dx.doi.org/10.48550/arxiv.1409.7970
Dick J; Gia QTL; Schwab C, 2014, Higher order Quasi-Monte Carlo integration for holomorphic, parametric operator equations, http://dx.doi.org/10.48550/arxiv.1409.2180
Brauchart JS; Dick J; Fang L, 2014, Spatial low-discrepancy sequences, spherical cone discrepancy, and applications in financial modeling, http://dx.doi.org/10.48550/arxiv.1408.4609
Brauchart JS; Dick J; Saff EB; Sloan IH; Wang YG; Womersley RS, 2014, Covering of spheres by spherical caps and worst-case error for equal weight cubature in Sobolev spaces, http://dx.doi.org/10.48550/arxiv.1407.8311
Dick J; Kuo F; Gia QTL; Schwab C, 2014, Multi-level higher order QMC Galerkin discretization for affine parametric operator equations, http://dx.doi.org/10.48550/arxiv.1406.4432
Dick J; Kritzer P; Leobacher G; Pillichshammer F, 2014, A reduced fast component-by-component construction of lattice points for integration in weighted spaces with fast decreasing weights, http://dx.doi.org/10.48550/arxiv.1404.5497
Dick J; Pillichshammer F, 2014, The weighted star discrepancy of Korobov's $p$-sets, http://dx.doi.org/10.48550/arxiv.1404.0114
Dick J; Hinrichs A; Pillichshammer F, 2014, Proof Techniques in Quasi-Monte Carlo Theory, http://dx.doi.org/10.48550/arxiv.1403.7334
Dick J; Rudolf D, 2013, Discrepancy estimates for variance bounding Markov chain quasi-Monte Carlo, http://dx.doi.org/10.48550/arxiv.1311.1890
Dick J; Kuo FY; Gia QTL; Nuyens D; Schwab C, 2013, Higher order QMC Galerkin discretization for parametric operator equations, http://dx.doi.org/10.48550/arxiv.1309.4624
Dick J; Gnewuch M, 2013, Optimal randomized changing dimension algorithms for infinite-dimensional integration on function spaces with ANOVA-type decomposition, http://dx.doi.org/10.48550/arxiv.1306.2821
Dick J, 2013, Explicit constructions of quasi-Monte Carlo rules for the numerical integration of high dimensional periodic functions, http://dx.doi.org/10.48550/arxiv.1304.0329
Dick J, 2013, The decay of the Walsh coefficients of smooth functions, http://dx.doi.org/10.48550/arxiv.1304.1052
Dick J, 2013, Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order, http://dx.doi.org/10.48550/arxiv.1304.0328
Goda T; Dick J, 2013, Construction of interlaced scrambled polynomial lattice rules of arbitrary high order, http://dx.doi.org/10.48550/arxiv.1301.6441
Dick J; Kritzer P; Pillichshammer F; Woźniakowski H, 2012, Approximation of analytic functions in Korobov spaces, http://dx.doi.org/10.48550/arxiv.1211.5822
Dick J; Nuyens D; Pillichshammer F, 2012, Lattice rules for nonperiodic smooth integrands, http://dx.doi.org/10.48550/arxiv.1211.3799
Dick J; Gnewuch M, 2012, Infinite-Dimensional Integration in Weighted Hilbert Spaces: Anchored Decompositions, Optimal Deterministic Algorithms, and Higher Order Convergence, http://dx.doi.org/10.48550/arxiv.1210.4223
Brauchart J; Dick J, 2012, A characterization of Sobolev spaces on the sphere and an extension of Stolarsky's invariance principle to arbitrary smoothness, http://dx.doi.org/10.48550/arxiv.1203.5157
Dick J; Kritzer P, 2012, A higher order Blokh-Zyablov propagation rule for higher order nets, http://dx.doi.org/10.48550/arxiv.1203.4322
Aistleitner C; Brauchart J; Dick J, 2011, Point sets on the sphere $\mathbb{S}^2$ with small spherical cap discrepancy, http://dx.doi.org/10.48550/arxiv.1109.3265
Baldeaux J; Dick J; Leobacher G; Nuyens D; Pillichshammer F, 2011, Efficient calculation of the worst-case error and (fast) component-by-component construction of higher order polynomial lattice rules, http://dx.doi.org/10.48550/arxiv.1105.2599
Chen S; Dick J; Owen AB, 2011, Consistency of Markov chain quasi-Monte Carlo on continuous state spaces, http://dx.doi.org/10.48550/arxiv.1105.1896
Brauchart JS; Dick J, 2011, Quasi-Monte Carlo rules for numerical integration over the unit sphere $\mathbb{S}^2$, http://dx.doi.org/10.48550/arxiv.1101.5450
Brauchart JS; Dick J, 2011, A simple Proof of Stolarsky's Invariance Principle, http://dx.doi.org/10.48550/arxiv.1101.4448
Dick J, 2010, Higher order scrambled digital nets achieve the optimal rate of the root mean square error for smooth integrands, http://dx.doi.org/10.48550/arxiv.1007.0842
Baldeaux J; Dick J, 2010, A Construction of Polynomial Lattice Rules with Small Gain Coefficients, http://dx.doi.org/10.48550/arxiv.1003.4785
Liu K-I; Dick J; Hickernell FJ, 2008, A Multivariate Fast Discrete Walsh Transform with an Application to Function Interpolation, http://dx.doi.org/10.48550/arxiv.0808.0487
Dick J, 2012, A fast Fourier transform method for computing the weight enumerator polynomial and trigonometric degree of lattice rules, http://arxiv.org/abs/1207.5275v1