ORCID as entered in ROS

Select Publications
2013, 'Orbital structure and transport characteristics of single donors', in Prati E; Shinada T (ed.), Single-Atom Nanoelectronics, Pan Stanford Publishing, Stanford, pp. 211 - 230, http://dx.doi.org/10.1201/b14792-10
,2013, 'Quantum Information in Silicon Devices Based on Individual Dopants', in Prati E; Shinada T (ed.), Single Atom Nanoelectronics, Pan Stanford Publishing Pte Ltd, pp. 5 - 39, http://www.panstanford.com/books/9789814316316.html
,2008, 'Quantum nanomagnets and nuclear spins: an overview', in Barbara B; Imry Y; Sawatzky G; Stamp PCE (ed.), Quantum Magnetism, edn. 1, Springer, Berlin, pp. 125 - 138, http://dx.doi.org/10.1007/978-1-4020-8512-3
,2023, 'In situ amplification of spin echoes within a kinetic inductance parametric amplifier', Science Advances, 9, pp. eadg1593, http://dx.doi.org/10.1126/sciadv.adg1593
,2023, 'An electrically driven single-atom “flip-flop” qubit', Science Advances, 9, pp. eadd9408, http://dx.doi.org/10.1126/sciadv.add9408
,2023, 'On-demand electrical control of spin qubits', Nature Nanotechnology, 18, pp. 131 - 136, http://dx.doi.org/10.1038/s41565-022-01280-4
,2023, 'Jellybean Quantum Dots in Silicon for Qubit Coupling and On-Chip Quantum Chemistry', Advanced Materials, pp. e2208557, http://dx.doi.org/10.1002/adma.202208557
,2023, 'Jellybean Quantum Dots in Silicon for Qubit Coupling and On‐Chip Quantum Chemistry (Adv. Mater. 19/2023)', Advanced Materials, 35, http://dx.doi.org/10.1002/adma.202370133
,2022, 'Beating the Thermal Limit of Qubit Initialization with a Bayesian Maxwell's Demon', Physical Review X, 12, http://dx.doi.org/10.1103/PhysRevX.12.041008
,2022, 'Measuring out-of-time-ordered correlation functions without reversing time evolution', Physical Review A, 106, http://dx.doi.org/10.1103/PhysRevA.106.042429
,2022, 'Near-Surface Electrical Characterization of Silicon Electronic Devices Using Focused keV-Range Ions', Physical Review Applied, 18, http://dx.doi.org/10.1103/PhysRevApplied.18.034037
,2022, 'Degenerate Parametric Amplification via Three-Wave Mixing Using Kinetic Inductance', Physical Review Applied, 17, http://dx.doi.org/10.1103/PhysRevApplied.17.034064
,2022, 'Precision tomography of a three-qubit donor quantum processor in silicon', Nature, 601, pp. 348 - 353, http://dx.doi.org/10.1038/s41586-021-04292-7
,2022, 'Deterministic Shallow Dopant Implantation in Silicon with Detection Confidence Upper-Bound to 99.85% by Ion–Solid Interactions', Advanced Materials, 34, http://dx.doi.org/10.1002/adma.202103235
,2022, 'Development of an Undergraduate Quantum Engineering Degree', IEEE Transactions on Quantum Engineering, 3, http://dx.doi.org/10.1109/TQE.2022.3157338
,2022, 'Deterministic Shallow Dopant Implantation in Silicon with Detection Confidence Upper‐Bound to 99.85% by Ion–Solid Interactions (Adv. Mater. 3/2022)', Advanced Materials, 34, pp. 2270022 - 2270022, http://dx.doi.org/10.1002/adma.202270022
,2021, 'Coherent spin qubit transport in silicon', Nature Communications, 12, pp. 4114, http://dx.doi.org/10.1038/s41467-021-24371-7
,2021, 'Conditional quantum operation of two exchange-coupled single-donor spin qubits in a MOS-compatible silicon device', Nature Communications, 12, pp. 181, http://dx.doi.org/10.1038/s41467-020-20424-5
,2021, 'Quantum-coherent nanoscience', Nature Nanotechnology, 16, pp. 1318 - 1329, http://dx.doi.org/10.1038/s41565-021-00994-1
,2021, 'Engineering local strain for single-atom nuclear acoustic resonance in silicon', Applied Physics Letters, 119, http://dx.doi.org/10.1063/5.0069305
,2021, 'Fast Coherent Control of a Nitrogen-Vacancy-Center Spin Ensemble Using a Dielectric Resonator at Cryogenic Temperatures', Physical Review Applied, 16, http://dx.doi.org/10.1103/PhysRevApplied.16.044051
,2021, 'Engineering local strain for single-atom nuclear acoustic resonance in silicon', , http://dx.doi.org/10.1063/5.0069305
,2021, 'A near-ideal degenerate parametric amplifier', Phys. Rev. Applied, 17, pp. 034064, http://dx.doi.org/10.1103/PhysRevApplied.17.034064
,2021, 'An ultra-stable 1.5 T permanent magnet assembly for qubit experiments at cryogenic temperatures', Review of Scientific Instruments, 92, http://dx.doi.org/10.1063/5.0055318
,2021, 'Full configuration interaction simulations of exchange-coupled donors in silicon using multi-valley effective mass theory', New Journal of Physics, 23, http://dx.doi.org/10.1088/1367-2630/ac0abf
,2021, 'Precision tomography of a three-qubit donor quantum processor in silicon', Nature, 601, pp. 348, http://dx.doi.org/10.1038/s41586-021-04292-7
,2021, 'Fast coherent control of an NV- spin ensemble using a KTaO3 dielectric resonator at cryogenic temperatures', , http://dx.doi.org/10.1103/PhysRevApplied.16.044051
,2021, 'Semiconductor qubits in practice', Nature Reviews Physics, 3, pp. 157 - 177, http://dx.doi.org/10.1038/s42254-021-00283-9
,2021, 'Exchange Coupling in a Linear Chain of Three Quantum-Dot Spin Qubits in Silicon', Nano Letters, 21, pp. 1517 - 1522, http://dx.doi.org/10.1021/acs.nanolett.0c04771
,2021, 'Pauli Blockade in Silicon Quantum Dots with Spin-Orbit Control', PRX Quantum, 2, http://dx.doi.org/10.1103/PRXQuantum.2.010303
,2020, 'Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot', Nature Communications, 11, pp. 797, http://dx.doi.org/10.1038/s41467-019-14053-w
,2020, 'Spin thermometry and spin relaxation of optically detected Cr3+ ions in ruby Al2 O3', Physical Review B, 102, http://dx.doi.org/10.1103/PhysRevB.102.104114
,2020, 'Deterministic Single Ion Implantation with 99.87% Confidence for Scalable Donor-Qubit Arrays in Silicon', , http://arxiv.org/abs/2009.02892v2
,2020, 'Donor Spins in Silicon for Quantum Technologies', ADVANCED QUANTUM TECHNOLOGIES, 3, http://dx.doi.org/10.1002/qute.202000005
,2020, 'Controllable freezing of the nuclear spin bath in a single-atom spin qubit', Science Advances, 6, pp. eaba3442 - eaba3442, http://dx.doi.org/10.1126/sciadv.aba3442
,2020, 'Operation of a silicon quantum processor unit cell above one kelvin', Nature, 580, pp. 350 - 354, http://dx.doi.org/10.1038/s41586-020-2171-6
,2020, 'Coherent electrical control of a single high-spin nucleus in silicon', Nature, 579, pp. 205 - 209, http://dx.doi.org/10.1038/s41586-020-2057-7
,2020, 'Measuring out-of-time-ordered correlation functions without reversing time evolution', Phys. Rev. A, 106, pp. 042429, http://dx.doi.org/10.1103/PhysRevA.106.042429
,2020, 'A silicon quantum-dot-coupled nuclear spin qubit', Nature Nanotechnology, 15, pp. 13 - 17, http://dx.doi.org/10.1038/s41565-019-0587-7
,2019, 'Single-spin qubits in isotopically enriched silicon at low magnetic field', Nature Communications, 10, http://dx.doi.org/10.1038/s41467-019-13416-7
,2019, 'Fidelity benchmarks for two-qubit gates in silicon', Nature, 569, pp. 532 - 536, http://dx.doi.org/10.1038/s41586-019-1197-0
,2019, 'Electron spin relaxation of single phosphorus donors in metal-oxide-semiconductor nanoscale devices', Physical Review B, 99, http://dx.doi.org/10.1103/PhysRevB.99.205306
,2019, 'Controlling Spin-Orbit Interactions in Silicon Quantum Dots Using Magnetic Field Direction', Physical Review X, 9, http://dx.doi.org/10.1103/PhysRevX.9.021028
,2019, 'Gate-based single-shot readout of spins in silicon', Nature Nanotechnology, 14, pp. 437 - 441, http://dx.doi.org/10.1038/s41565-019-0400-7
,2019, 'Silicon qubit fidelities approaching incoherent noise limits via pulse engineering', Nature Electronics, 2, pp. 151 - 158, http://dx.doi.org/10.1038/s41928-019-0234-1
,2018, 'Integrated silicon qubit platform with single-spin addressability, exchange control and single-shot singlet-triplet readout', Nature Communications, 9, pp. 4370, http://dx.doi.org/10.1038/s41467-018-06039-x
,2018, 'Assessment of a Silicon Quantum Dot Spin Qubit Environment via Noise Spectroscopy', Physical Review Applied, 10, http://dx.doi.org/10.1103/PhysRevApplied.10.044017
,2018, 'Coherent control via weak measurements in P 31 single-atom electron and nuclear spin qubits', Physical Review B, 98, http://dx.doi.org/10.1103/PhysRevB.98.155201
,2018, 'Exploring quantum chaos with a single nuclear spin', Physical Review E, 98, http://dx.doi.org/10.1103/PhysRevE.98.042206
,2018, 'Robust electric dipole transition at microwave frequencies for nuclear spin qubits in silicon', Physical Review B, 98, http://dx.doi.org/10.1103/PhysRevB.98.075313
,