Select Publications
Book Chapters
2013, 'Orbital structure and transport characteristics of single donors', in Prati E; Shinada T (ed.), Single-Atom Nanoelectronics, Pan Stanford Publishing, Stanford, pp. 211 - 230, http://dx.doi.org/10.1201/b14792-10
,2013, 'Quantum Information in Silicon Devices Based on Individual Dopants', in Prati E; Shinada T (ed.), Single Atom Nanoelectronics, Pan Stanford Publishing Pte Ltd, pp. 5 - 39, http://www.panstanford.com/books/9789814316316.html
,2008, 'Quantum nanomagnets and nuclear spins: an overview', in Barbara B; Imry Y; Sawatzky G; Stamp PCE (ed.), Quantum Magnetism, Springer, Berlin, pp. 125 - 138, http://dx.doi.org/10.1007/978-1-4020-8512-3
,Journal articles
2024, 'Navigating the 16-dimensional Hilbert space of a high-spin donor qudit with electric and magnetic fields', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-45368-y
,2024, 'Strong microwave squeezing above 1 Tesla and 1 Kelvin', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-48519-3
,2024, 'Tomography of entangling two-qubit logic operations in exchange-coupled donor electron spin qubits', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-52795-4
,2024, 'Assessment of the errors of high-fidelity two-qubit gates in silicon quantum dots', Nature Physics, 20, pp. 1804 - 1809, http://dx.doi.org/10.1038/s41567-024-02614-w
,2024, 'Scalable Atomic Arrays for Spin-Based Quantum Computers in Silicon', Advanced Materials, 36, http://dx.doi.org/10.1002/adma.202405006
,2024, 'Single-step parity check gate set for quantum error correction', Quantum Science and Technology, 9, http://dx.doi.org/10.1088/2058-9565/ad473c
,2024, 'Latched detection of zeptojoule spin echoes with a kinetic inductance parametric oscillator', Science Advances, 10, http://dx.doi.org/10.1126/sciadv.adm7624
,2024, 'High-fidelity spin qubit operation and algorithmic initialization above 1 K', Nature, 627, pp. 772 - 777, http://dx.doi.org/10.1038/s41586-024-07160-2
,2024, 'Improved Placement Precision of Donor Spin Qubits in Silicon using Molecule Ion Implantation', Advanced Quantum Technologies, 7, http://dx.doi.org/10.1002/qute.202300316
,2024, 'Error channels in quantum nondemolition measurements on spin systems', Physical Review B, 109, http://dx.doi.org/10.1103/PhysRevB.109.085302
,2024, 'Hyperfine Spectroscopy and Fast, All-Optical Arbitrary State Initialization and Readout of a Single, Ten-Level Ge 73 Vacancy Nuclear Spin Qudit in Diamond', Physical Review Letters, 132, http://dx.doi.org/10.1103/PhysRevLett.132.060603
,2024, 'Robust macroscopic Schrödinger's cat on a nucleus', Physical Review Research, 6, http://dx.doi.org/10.1103/PhysRevResearch.6.013101
,2023, 'Jellybean Quantum Dots in Silicon for Qubit Coupling and On-Chip Quantum Chemistry', Advanced Materials, 35, http://dx.doi.org/10.1002/adma.202208557
,2023, 'In situ amplification of spin echoes within a kinetic inductance parametric amplifier', Science Advances, 9, http://dx.doi.org/10.1126/sciadv.adg1593
,2023, 'An electrically driven single-atom “flip-flop” qubit', Science Advances, 9, http://dx.doi.org/10.1126/sciadv.add9408
,2023, 'On-demand electrical control of spin qubits', Nature Nanotechnology, 18, pp. 131 - 136, http://dx.doi.org/10.1038/s41565-022-01280-4
,2022, 'Beating the Thermal Limit of Qubit Initialization with a Bayesian Maxwell's Demon', Physical Review X, 12, http://dx.doi.org/10.1103/PhysRevX.12.041008
,2022, 'Measuring out-of-time-ordered correlation functions without reversing time evolution', Physical Review A, 106, http://dx.doi.org/10.1103/PhysRevA.106.042429
,2022, 'Near-Surface Electrical Characterization of Silicon Electronic Devices Using Focused keV-Range Ions', Physical Review Applied, 18, http://dx.doi.org/10.1103/PhysRevApplied.18.034037
,2022, 'Degenerate Parametric Amplification via Three-Wave Mixing Using Kinetic Inductance', Physical Review Applied, 17, http://dx.doi.org/10.1103/PhysRevApplied.17.034064
,2022, 'Precision tomography of a three-qubit donor quantum processor in silicon', Nature, 601, pp. 348 - 353, http://dx.doi.org/10.1038/s41586-021-04292-7
,2022, 'Deterministic Shallow Dopant Implantation in Silicon with Detection Confidence Upper-Bound to 99.85% by Ion–Solid Interactions', Advanced Materials, 34, http://dx.doi.org/10.1002/adma.202103235
,2022, 'Development of an Undergraduate Quantum Engineering Degree', IEEE Transactions on Quantum Engineering, 3, http://dx.doi.org/10.1109/TQE.2022.3157338
,2022, 'Deterministic Shallow Dopant Implantation in Silicon with Detection Confidence Upper‐Bound to 99.85% by Ion–Solid Interactions (Adv. Mater. 3/2022)', Advanced Materials, 34, http://dx.doi.org/10.1002/adma.202270022
,2021, 'Coherent spin qubit transport in silicon', Nature Communications, 12, pp. 4114, http://dx.doi.org/10.1038/s41467-021-24371-7
,2021, 'Conditional quantum operation of two exchange-coupled single-donor spin qubits in a MOS-compatible silicon device', Nature Communications, 12, pp. 181, http://dx.doi.org/10.1038/s41467-020-20424-5
,2021, 'Quantum-coherent nanoscience', Nature Nanotechnology, 16, pp. 1318 - 1329, http://dx.doi.org/10.1038/s41565-021-00994-1
,2021, 'Engineering local strain for single-atom nuclear acoustic resonance in silicon', Applied Physics Letters, 119, http://dx.doi.org/10.1063/5.0069305
,2021, 'Fast Coherent Control of a Nitrogen-Vacancy-Center Spin Ensemble Using a Dielectric Resonator at Cryogenic Temperatures', Physical Review Applied, 16, http://dx.doi.org/10.1103/PhysRevApplied.16.044051
,2021, 'Engineering local strain for single-atom nuclear acoustic resonance in silicon', , http://dx.doi.org/10.1063/5.0069305
,2021, 'A near-ideal degenerate parametric amplifier', Phys. Rev. Applied, 17, pp. 034064, http://dx.doi.org/10.1103/PhysRevApplied.17.034064
,2021, 'An ultra-stable 1.5 T permanent magnet assembly for qubit experiments at cryogenic temperatures', Review of Scientific Instruments, 92, http://dx.doi.org/10.1063/5.0055318
,2021, 'Full configuration interaction simulations of exchange-coupled donors in silicon using multi-valley effective mass theory', New Journal of Physics, 23, http://dx.doi.org/10.1088/1367-2630/ac0abf
,2021, 'Precision tomography of a three-qubit donor quantum processor in silicon', Nature, 601, pp. 348, http://dx.doi.org/10.1038/s41586-021-04292-7
,2021, 'Fast coherent control of an NV- spin ensemble using a KTaO3 dielectric resonator at cryogenic temperatures', , http://dx.doi.org/10.1103/PhysRevApplied.16.044051
,2021, 'Semiconductor qubits in practice', Nature Reviews Physics, 3, pp. 157 - 177, http://dx.doi.org/10.1038/s42254-021-00283-9
,2021, 'Exchange Coupling in a Linear Chain of Three Quantum-Dot Spin Qubits in Silicon', Nano Letters, 21, pp. 1517 - 1522, http://dx.doi.org/10.1021/acs.nanolett.0c04771
,2021, 'Pauli Blockade in Silicon Quantum Dots with Spin-Orbit Control', PRX Quantum, 2, http://dx.doi.org/10.1103/PRXQuantum.2.010303
,2020, 'Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot', Nature Communications, 11, http://dx.doi.org/10.1038/s41467-019-14053-w
,2020, 'Donor Spins in Silicon for Quantum Technologies', Advanced Quantum Technologies, 3, http://dx.doi.org/10.1002/qute.202000005
,2020, 'Spin thermometry and spin relaxation of optically detected Cr3+ ions in ruby Al2 O3', Physical Review B, 102, http://dx.doi.org/10.1103/PhysRevB.102.104114
,2020, 'Deterministic Single Ion Implantation with 99.87% Confidence for Scalable Donor-Qubit Arrays in Silicon', , http://arxiv.org/abs/2009.02892v2
,2020, 'Controllable freezing of the nuclear spin bath in a single-atom spin qubit', Science Advances, 6, http://dx.doi.org/10.1126/sciadv.aba3442
,2020, 'Operation of a silicon quantum processor unit cell above one kelvin', Nature, 580, pp. 350 - 354, http://dx.doi.org/10.1038/s41586-020-2171-6
,2020, 'Coherent electrical control of a single high-spin nucleus in silicon', Nature, 579, pp. 205 - 209, http://dx.doi.org/10.1038/s41586-020-2057-7
,2020, 'Measuring out-of-time-ordered correlation functions without reversing time evolution', Phys. Rev. A, 106, pp. 042429, http://dx.doi.org/10.1103/PhysRevA.106.042429
,2020, 'A silicon quantum-dot-coupled nuclear spin qubit', Nature Nanotechnology, 15, pp. 13 - 17, http://dx.doi.org/10.1038/s41565-019-0587-7
,