ORCID as entered in ROS

Select Publications
2023, Scalable Atomic Arrays for Spin-Based Quantum Computers in Silicon, , http://arxiv.org/abs/2309.09626v1
,2023, Hyperfine spectroscopy and fast, all-optical arbitrary state initialization and readout of a single, ten-level ${}^{73}$Ge vacancy nuclear spin qudit, , http://arxiv.org/abs/2309.04126v1
,2023, Improved placement precision of implanted donor spin qubits in silicon using molecule ions, , http://arxiv.org/abs/2308.04117v1
,2023, Error channels in quantum nondemolition measurements on spin systems, , http://arxiv.org/abs/2307.14103v1
,2023, Single-Step Parity Check Gate Set for Quantum Error Correction, , http://arxiv.org/abs/2306.08849v1
,2023, Navigating the 16-dimensional Hilbert space of a high-spin donor qudit with electric and magnetic fields, , http://arxiv.org/abs/2306.07453v2
,2023, Robust Macroscopic Schrödinger's Cat on a Nucleus, , http://arxiv.org/abs/2304.13813v2
,2022, In-situ amplification of spin echoes within a kinetic inductance parametric amplifier, , http://dx.doi.org/10.48550/arxiv.2211.11333
,2022, Jellybean quantum dots in silicon for qubit coupling and on-chip quantum chemistry, , http://dx.doi.org/10.1002/adma.202208557
,2022, An electrically-driven single-atom `flip-flop' qubit, , http://arxiv.org/abs/2202.04438v3
,2022, Quantum-Coherent Nanoscience, , http://dx.doi.org/10.1038/s41565-021-00994-1
,2022, Near-Surface Electrical Characterisation of Silicon Electronic Devices Using Focused keV Ions, , http://dx.doi.org/10.1103/PhysRevApplied.18.034037
,2022, On-demand electrical control of spin qubits, , http://dx.doi.org/10.1038/s41565-022-01280-4
,2021, Development of an Undergraduate Quantum Engineering Degree, , http://dx.doi.org/10.1109/TQE.2022.3157338
,2021, Beating the thermal limit of qubit initialization with a Bayesian Maxwell's demon, , http://dx.doi.org/10.1103/PhysRevX.12.041008
,2020, Full configuration interaction simulations of exchange-coupled donors in silicon using multi-valley effective mass theory, , http://dx.doi.org/10.48550/arxiv.2012.06293
,2020, An ultra-stable 1.5 tesla permanent magnet assembly for qubit experiments at cryogenic temperatures, , http://dx.doi.org/10.48550/arxiv.2010.02455
,2020, Donor spins in silicon for quantum technologies, , http://dx.doi.org/10.48550/arxiv.2009.04081
,2020, Deterministic Single Ion Implantation with 99.87% Confidence for Scalable Donor-Qubit Arrays in Silicon, , http://dx.doi.org/10.48550/arxiv.2009.02892
,2020, Coherent spin qubit transport in silicon, , http://dx.doi.org/10.48550/arxiv.2008.04020
,2020, Spin thermometry and spin relaxation of optically detected Cr3+ ions in ruby Al2O3, , http://dx.doi.org/10.48550/arxiv.2007.07493
,2020, Conditional quantum operation of two exchange-coupled single-donor spin qubits in a MOS-compatible silicon device, , http://dx.doi.org/10.48550/arxiv.2006.04483
,2020, Semiconductor Qubits In Practice, , http://dx.doi.org/10.48550/arxiv.2005.06564
,2020, Exchange coupling in a linear chain of three quantum-dot spin qubits in silicon, , http://dx.doi.org/10.48550/arxiv.2004.07666
,2020, Pauli Blockade in Silicon Quantum Dots with Spin-Orbit Control, , http://dx.doi.org/10.48550/arxiv.2004.07078
,2020, Measuring out-of-time-ordered correlation functions without reversing time evolution, , http://dx.doi.org/10.48550/arxiv.2003.03980
,2019, Controllable freezing of the nuclear spin bath in a single-atom spin qubit, , http://dx.doi.org/10.48550/arxiv.1907.11032
,2019, Coherent electrical control of a single high-spin nucleus in silicon, , http://dx.doi.org/10.48550/arxiv.1906.01086
,2019, A silicon quantum-dot-coupled nuclear spin qubit, , http://dx.doi.org/10.48550/arxiv.1904.08260
,2019, Silicon quantum processor unit cell operation above one Kelvin, , http://dx.doi.org/10.48550/arxiv.1902.09126
,2019, Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot, , http://dx.doi.org/10.48550/arxiv.1902.01550
,2018, Single-spin qubits in isotopically enriched silicon at low magnetic field, , http://dx.doi.org/10.48550/arxiv.1812.08347
,2018, Electron spin relaxation of single phosphorus donors in metal-oxide-semiconductor nanoscale devices, , http://dx.doi.org/10.48550/arxiv.1812.06644
,2018, Gate-based single-shot readout of spins in silicon, , http://dx.doi.org/10.48550/arxiv.1809.01864
,2018, Controlling spin-orbit interactions in silicon quantum dots using magnetic field direction, , http://dx.doi.org/10.48550/arxiv.1807.10415
,2018, Silicon qubit fidelities approaching incoherent noise limits via pulse engineering, , http://dx.doi.org/10.48550/arxiv.1807.09500
,2018, Fidelity benchmarks for two-qubit gates in silicon, , http://dx.doi.org/10.48550/arxiv.1805.05027
,2018, Assessment of a silicon quantum dot spin qubit environment via noise spectroscopy, , http://dx.doi.org/10.48550/arxiv.1803.01609
,2017, Integrated silicon qubit platform with single-spin addressability, exchange control and robust single-shot singlet-triplet readout, , http://dx.doi.org/10.48550/arxiv.1708.03445
,2017, Robust electric dipole transition at microwave frequencies for nuclear spin qubits in silicon, , http://dx.doi.org/10.48550/arxiv.1706.08095
,2017, Exploring quantum chaos with a single nuclear spin, , http://dx.doi.org/10.48550/arxiv.1703.04852
,2017, Interface induced spin-orbit interaction in silicon quantum dots and prospects for scalability, , http://dx.doi.org/10.48550/arxiv.1703.03840
,2017, Coherent control via weak measurements in $^{31}$P single-atom electron and nuclear spin qubits, , http://dx.doi.org/10.48550/arxiv.1702.07991
,2016, Interfacing spin qubits in quantum dots and donors - hot, dense and coherent, , http://dx.doi.org/10.48550/arxiv.1612.05936
,2016, Impact of g-factors and valleys on spin qubits in a silicon double quantum dot, , http://dx.doi.org/10.48550/arxiv.1608.07748
,2016, A single-atom quantum memory in silicon, , http://dx.doi.org/10.48550/arxiv.1608.07109
,2016, Strain-induced spin resonance shifts in silicon devices, , http://dx.doi.org/10.48550/arxiv.1608.07346
,2016, A logical qubit in a linear array of semiconductor quantum dots, , http://dx.doi.org/10.48550/arxiv.1608.06335
,2016, Optimization of a solid-state electron spin qubit using Gate Set Tomography, , http://dx.doi.org/10.48550/arxiv.1606.02856
,2016, Breaking the rotating wave approximation for a strongly-driven, dressed, single electron spin, , http://dx.doi.org/10.48550/arxiv.1606.02380
,