ORCID as entered in ROS

Select Publications
2023, 'Engineering Qubits in Silicon with Atomic Precision', Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada, 29, pp. 1362, http://dx.doi.org/10.1093/micmic/ozad067.698
,2023, 'A solid-state quantum microscope for wavefunction control of an atom-based quantum dot device in silicon', Nature Electronics, 6, pp. 409 - 416, http://dx.doi.org/10.1038/s41928-023-00979-z
,2023, 'Multi-Scale Modeling of Tunneling in Nanoscale Atomically Precise Si:P Tunnel Junctions', Advanced Functional Materials, 33, pp. 2214011 - 2214011, http://dx.doi.org/10.1002/adfm.202214011
,2023, 'Hyperfine-mediated spin relaxation in donor-atom qubits in silicon', Physical Review Research, 5, http://dx.doi.org/10.1103/PhysRevResearch.5.023043
,2023, 'The Use of Exchange Coupled Atom Qubits as Atomic-Scale Magnetic Field Sensors', Advanced Materials, 35, pp. e2201625, http://dx.doi.org/10.1002/adma.202201625
,2023, 'High-Fidelity CNOT Gate for Donor Electron Spin Qubits in Silicon', Physical Review Applied, 19, http://dx.doi.org/10.1103/PhysRevApplied.19.024068
,2023, 'Single-Shot Readout of Multiple Donor Electron Spins with a Gate-Based Sensor', PRX Quantum, 4, http://dx.doi.org/10.1103/PRXQuantum.4.010319
,2023, 'The Use of Exchange Coupled Atom Qubits as Atomic‐Scale Magnetic Field Sensors (Adv. Mater. 6/2023)', Advanced Materials, 35, pp. 2370039 - 2370039, http://dx.doi.org/10.1002/adma.202370039
,2022, 'Impact of charge noise on electron exchange interactions in semiconductors', npj Quantum Information, 8, http://dx.doi.org/10.1038/s41534-022-00523-5
,2022, 'Optimisation of electron spin qubits in electrically driven multi-donor quantum dots', npj Quantum Information, 8, http://dx.doi.org/10.1038/s41534-022-00646-9
,2022, 'Ramped measurement technique for robust high-fidelity spin qubit readout', Science Advances, 8, pp. eabq0455, http://dx.doi.org/10.1126/sciadv.abq0455
,2022, 'Shelving and latching spin readout in atom qubits in silicon', Physical Review B, 106, http://dx.doi.org/10.1103/PhysRevB.106.075418
,2022, 'Engineering topological states in atom-based semiconductor quantum dots', Nature, 606, pp. 694 - 699, http://dx.doi.org/10.1038/s41586-022-04706-0
,2022, 'Erratum: Benchmarking high fidelity single-shot readout of semiconductor qubits (New J. Phys. (2019) 21 (063011) DOI: 10.1088/1367-2630/ab242c/meta)', New Journal of Physics, 24, http://dx.doi.org/10.1088/1367-2630/ac7479
,2022, 'Valley population of donor states in highly strained silicon', Materials for Quantum Technology, 2, pp. 025002 - 025002, http://dx.doi.org/10.1088/2633-4356/ac5d1d
,2022, 'Flopping-Mode Electric Dipole Spin Resonance in Phosphorus Donor Qubits in Silicon', Physical Review Applied, 17, http://dx.doi.org/10.1103/PhysRevApplied.17.054006
,2022, 'Spin-Photon Coupling for Atomic Qubit Devices in Silicon', Physical Review Applied, 17, http://dx.doi.org/10.1103/PhysRevApplied.17.054007
,2021, 'Monolithic Three-Dimensional Tuning of an Atomically Defined Silicon Tunnel Junction', Nano Letters, 21, pp. 10092 - 10098, http://dx.doi.org/10.1021/acs.nanolett.1c03879
,2021, 'Coherent control of a donor-molecule electron spin qubit in silicon', Nature Communications, 12, http://dx.doi.org/10.1038/s41467-021-23662-3
,2021, 'Engineering long spin coherence times of spin–orbit qubits in silicon', Nature Materials, 20, pp. 38 - 42, http://dx.doi.org/10.1038/s41563-020-0743-3
,2020, 'Valley interference and spin exchange at the atomic scale in silicon', Nature Communications, 11, pp. 6124, http://dx.doi.org/10.1038/s41467-020-19835-1
,2020, 'Exploiting a Single-Crystal Environment to Minimize the Charge Noise on Qubits in Silicon', Advanced Materials, 32, http://dx.doi.org/10.1002/adma.202003361
,2020, 'Quantum Computing: Exploiting a Single‐Crystal Environment to Minimize the Charge Noise on Qubits in Silicon (Adv. Mater. 40/2020)', Advanced Materials, 32, pp. 2070298 - 2070298, http://dx.doi.org/10.1002/adma.202070298
,2019, 'Single-Shot Spin Readout in Semiconductors Near the Shot-Noise Sensitivity Limit', Physical Review X, 9, http://dx.doi.org/10.1103/PhysRevX.9.041003
,2019, 'シリコン中のアクセプタ不純物スピン状態の制御による長いコヒーレンス時間の実現', , pp. 265 - 265, http://dx.doi.org/10.11316/jpsgaiyo.73.2.0_265
,2019, 'A two-qubit gate between phosphorus donor electrons in silicon', Nature, 571, pp. 371 - 375, http://dx.doi.org/10.1038/s41586-019-1381-2
,2019, 'Benchmarking high fidelity single-shot readout of semiconductor qubits', New Journal of Physics, 21, http://dx.doi.org/10.1088/1367-2630/ab242c
,2019, 'Spin read-out in atomic qubits in an all-epitaxial three-dimensional transistor', Nature Nanotechnology, 14, pp. 137 - 140, http://dx.doi.org/10.1038/s41565-018-0338-1
,2018, 'Readout and control of the spin-orbit states of two coupled acceptor atoms in a silicon transistor', Science Advances, 4, pp. eaat9199, http://dx.doi.org/10.1126/sciadv.aat9199
,2018, 'Spin–orbit coupling in silicon for electrons bound to donors', npj Quantum Information, 4, http://dx.doi.org/10.1038/s41534-018-0111-1
,2018, 'Two-electron spin correlations in precision placed donors in silicon', Nature Communications, 9, http://dx.doi.org/10.1038/s41467-018-02982-x
,2018, 'Single-Shot Single-Gate rf Spin Readout in Silicon', Physical Review X, 8, http://dx.doi.org/10.1103/PhysRevX.8.041032
,2018, 'Spin Echo Study of Boron in 28Si at Millikelvin Temperature', , pp. 1023 - 1023, http://dx.doi.org/10.11316/jpsgaiyo.72.2.0_1023
,2018, 'Valley Filtering in Spatial Maps of Coupling between Silicon Donors and Quantum Dots', Physical Review X, 8, http://dx.doi.org/10.1103/PhysRevX.8.031049
,2018, 'Addressable electron spin resonance using donors and donor molecules in silicon', Science Advances, 4, http://dx.doi.org/10.1126/sciadv.aaq1459
,2018, 'Characterization of a Scalable Donor-Based Singlet-Triplet Qubit Architecture in Silicon', Nano Letters, 18, pp. 4081 - 4085, http://dx.doi.org/10.1021/acs.nanolett.8b00006
,2018, 'Singlet-triplet minus mixing and relaxation lifetimes in a double donor dot', Applied Physics Letters, 112, http://dx.doi.org/10.1063/1.5021500
,2018, 'Two-electron states of a group-V donor in silicon from atomistic full configuration interactions', Physical Review B, 97, http://dx.doi.org/10.1103/PhysRevB.97.195301
,2018, 'We must set the bar high and tell students we expect them to jump over it', Journal and Proceedings of the Royal Society of New South Wales, 151, pp. 14 - 21
,2017, 'Tunneling Statistics for Analysis of Spin-Readout Fidelity', Physical Review Applied, 8, http://dx.doi.org/10.1103/PhysRevApplied.8.034019
,2017, 'High-Fidelity Single-Shot Singlet-Triplet Readout of Precision-Placed Donors in Silicon', Physical Review Letters, 119, http://dx.doi.org/10.1103/PhysRevLett.119.046802
,2017, 'Dephasing rates for weak localization and universal conductance fluctuations in two dimensional Si:P and Ge:P ω-layers', Scientific Reports, 7, http://dx.doi.org/10.1038/srep46670
,2017, 'Probing the Quantum States of a Single Atom Transistor at Microwave Frequencies', ACS Nano, 11, pp. 2444 - 2451, http://dx.doi.org/10.1021/acsnano.6b06362
,2017, 'Atomically engineered electron spin lifetimes of 30 s in silicon', Science Advances, 3, http://dx.doi.org/10.1126/sciadv.1602811
,2017, 'Probing the Quantum States of a Single Atom Transistor at Microwave Frequencies (vol 11, pg 2444, 2017)', ACS NANO, 11, pp. 3420 - 3420, http://dx.doi.org/10.1021/acsnano.6b08154
,2017, 'In Situ Patterning of Ultrasharp Dopant Profiles in Silicon', ACS Nano, 11, pp. 1683 - 1688, http://dx.doi.org/10.1021/acsnano.6b07359
,2016, 'Characterizing Si:P quantum dot qubits with spin resonance techniques (vol 6, 31830, 2016)', SCIENTIFIC REPORTS, 6, http://dx.doi.org/10.1038/srep38120
,2016, 'High-Sensitivity Charge Detection with a Single-Lead Quantum Dot for Scalable Quantum Computation', Physical Review Applied, 6, http://dx.doi.org/10.1103/PhysRevApplied.6.044016
,2016, 'Ultralow-Noise Atomic-Scale Structures for Quantum Circuitry in Silicon', Nano Letters, 16, pp. 5779 - 5784, http://dx.doi.org/10.1021/acs.nanolett.6b02513
,2016, 'Spatial metrology of dopants in silicon with exact lattice site precision', Nature Nanotechnology, 11, pp. 763 - 768, http://dx.doi.org/10.1038/nnano.2016.83
,