Select Publications
Books
2006, Basic properties of silicon surfaces, http://dx.doi.org/10.1142/9781860948053_0002
,2002, Nanotechnology, Small things, Big Science, Chapman and Hall
,2002, Nanotechnology: Basic Science and Emerging Technologies, University of New South Wales Press, Australia
,Book Chapters
2013, 'Orbital Structure and transport characteristics of single donors.', in Prati E; Shinada T (ed.), Single-Atom Nanoelectronics, CRC Press, http://dx.doi.org/10.4032/9789814316699
,2013, 'Using Scanning Tunneling Microscopy to Realize Atomic- Scale Silicon Devices', in Single-Atom Nanoelectronics, Pan Stanford Publishing, http://dx.doi.org/10.1201/b14792-5
,2013, 'Using Scanning Tunneling Microscopy to Realize Atomic-Scale Silicon Devices', in Prati E; Shinada T (ed.), Single Atom Nanoelectronics, PAN STANFORD PUBLISHING PTE LTD, pp. 61 - 88, http://dx.doi.org/10.4032/9789814316699
,2012, 'Atomic-Scale Devices in Silicon by Scanning Tunneling Microscopy', in Advances in Atom and Single Molecule Machines, Springer Berlin Heidelberg, pp. 181 - 196, http://dx.doi.org/10.1007/978-3-642-28172-3_14
,2011, 'Ballistic Transport in 1D GaAs/AlGaAs Heterostructures', in Comprehensive Semiconductor Science and Technology, pp. 279 - 325, http://dx.doi.org/10.1016/B978-0-44-453153-7.00082-1
,2011, 'Ballistic Transport in 1D GaAs/AlGaAs Heterostructures.', in Bhattacharya P (ed.), Comprehensive Semiconductor Science and Technology, Six-Volume Set, 1st Edition, Elsevier Science, Amsterdam, pp. 281 - 325
,2010, 'Ballistic transport in 1D GaAs/AlGaAs heterostructures', in Bhattacharya P; Kamimura H; Fornari R (ed.), Comprehensive Semiconductor Science and Technology Volume 1: Semiconductors, Elsevier Science, pp. 4 - 47
,2009, 'Nanotechnology in Australia', in Emerging Nanotechnology Power: Nanotechnology R and D and Business Trends in the Asia Pacific Rim, pp. 37 - 57, http://dx.doi.org/10.1142/9789814261555_0002
,2006, 'Basic properties of semiconductor surfaces', in Grutter P; Hofer W; Rosei F (ed.), Properties of Single Organic Molecules on Crystal Surfaces, Imperial College Press, UK, pp. 29 - 60
,2002, 'Magnetization and Orbital Properties of the Two-Dimensional Electron Gas in the Quantum Limit', in Exotic States in Quantum Nanostructures, Springer Netherlands, pp. 99 - 138, http://dx.doi.org/10.1007/978-94-015-9974-0_3
,2001, 'Nanotechnology: Physics, Chemistry and Biology Unite at the Ultra-Small Scale', in Impact Science, Science Foundation for Physics, Australia, pp. 53 - 62
,2001, 'Quantum Computing', in Impact Science, Science Foundation for Physics, Australia, pp. 43 - 52
,'Interactions in High-Mobility 2D Electron and Hole Systems', in NATO Science Series II: Mathematics, Physics and Chemistry, Kluwer Academic Publishers, pp. 349 - 370, http://dx.doi.org/10.1007/1-4020-2193-3_21
,Journal articles
2024, 'Engineering Spin-Orbit Interactions in Silicon Qubits at the Atomic-Scale', Advanced Materials, 36, http://dx.doi.org/10.1002/adma.202312736
,2024, 'High-fidelity initialization and control of electron and nuclear spins in a four-qubit register', Nature Nanotechnology, 19, pp. 605 - 611, http://dx.doi.org/10.1038/s41565-023-01596-9
,2024, 'High-fidelity initialization and control of multiple nuclear spin qubits in silicon', Nature Nanotechnology, 19, pp. 584 - 585, http://dx.doi.org/10.1038/s41565-024-01603-7
,2024, 'Exploiting Atomic Control to Show When Atoms Become Molecules', Advanced Functional Materials, 34, http://dx.doi.org/10.1002/adfm.202307285
,2024, 'Impact of measurement backaction on nuclear spin qubits in silicon', Physical Review B, 109, http://dx.doi.org/10.1103/PhysRevB.109.035157
,2024, 'Machine Learning-Assisted Precision Manufacturing of Atom Qubits in Silicon', ACS Nano, http://dx.doi.org/10.1021/acsnano.4c00080
,2024, 'Measurement of Enhanced Spin-Orbit Coupling Strength for Donor-Bound Electron Spins in Silicon', Advanced Materials, http://dx.doi.org/10.1002/adma.202405916
,2024, 'Superexchange coupling of donor qubits in silicon', Physical Review Applied, 21, http://dx.doi.org/10.1103/PhysRevApplied.21.014038
,2023, 'Atomic Engineering of Molecular Qubits for High-Speed, High-Fidelity Single Qubit Gates', ACS Nano, 17, pp. 22601 - 22610, http://dx.doi.org/10.1021/acsnano.3c06668
,2023, 'Semiconductor-Quantum-Dot Modulator for Cryogenic Operation of Quantum Circuitry', Physical Review Applied, 20, http://dx.doi.org/10.1103/PhysRevApplied.20.034066
,2023, 'Engineering Qubits in Silicon with Atomic Precision', Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada, 29, pp. 1362, http://dx.doi.org/10.1093/micmic/ozad067.698
,2023, 'A solid-state quantum microscope for wavefunction control of an atom-based quantum dot device in silicon', Nature Electronics, 6, pp. 409 - 416, http://dx.doi.org/10.1038/s41928-023-00979-z
,2023, 'Multi-Scale Modeling of Tunneling in Nanoscale Atomically Precise Si:P Tunnel Junctions', Advanced Functional Materials, 33, http://dx.doi.org/10.1002/adfm.202214011
,2023, 'Hyperfine-mediated spin relaxation in donor-atom qubits in silicon', Physical Review Research, 5, http://dx.doi.org/10.1103/PhysRevResearch.5.023043
,2023, 'The Use of Exchange Coupled Atom Qubits as Atomic-Scale Magnetic Field Sensors', Advanced Materials, 35, http://dx.doi.org/10.1002/adma.202201625
,2023, 'High-Fidelity CNOT Gate for Donor Electron Spin Qubits in Silicon', Physical Review Applied, 19, http://dx.doi.org/10.1103/PhysRevApplied.19.024068
,2023, 'Single-Shot Readout of Multiple Donor Electron Spins with a Gate-Based Sensor', PRX Quantum, 4, http://dx.doi.org/10.1103/PRXQuantum.4.010319
,2023, 'The Use of Exchange Coupled Atom Qubits as Atomic‐Scale Magnetic Field Sensors (Adv. Mater. 6/2023)', Advanced Materials, 35, http://dx.doi.org/10.1002/adma.202370039
,2022, 'Impact of charge noise on electron exchange interactions in semiconductors', npj Quantum Information, 8, http://dx.doi.org/10.1038/s41534-022-00523-5
,2022, 'Optimisation of electron spin qubits in electrically driven multi-donor quantum dots', npj Quantum Information, 8, http://dx.doi.org/10.1038/s41534-022-00646-9
,2022, 'Ramped measurement technique for robust high-fidelity spin qubit readout', Science Advances, 8, http://dx.doi.org/10.1126/sciadv.abq0455
,2022, 'Shelving and latching spin readout in atom qubits in silicon', Physical Review B, 106, http://dx.doi.org/10.1103/PhysRevB.106.075418
,2022, 'Engineering topological states in atom-based semiconductor quantum dots', Nature, 606, pp. 694 - 699, http://dx.doi.org/10.1038/s41586-022-04706-0
,2022, 'Erratum: Benchmarking high fidelity single-shot readout of semiconductor qubits (New J. Phys. (2019) 21 (063011) DOI: 10.1088/1367-2630/ab242c/meta)', New Journal of Physics, 24, http://dx.doi.org/10.1088/1367-2630/ac7479
,2022, 'Valley population of donor states in highly strained silicon', Materials for Quantum Technology, 2, pp. 025002 - 025002, http://dx.doi.org/10.1088/2633-4356/ac5d1d
,2022, 'Flopping-Mode Electric Dipole Spin Resonance in Phosphorus Donor Qubits in Silicon', Physical Review Applied, 17, http://dx.doi.org/10.1103/PhysRevApplied.17.054006
,2022, 'Spin-Photon Coupling for Atomic Qubit Devices in Silicon', Physical Review Applied, 17, http://dx.doi.org/10.1103/PhysRevApplied.17.054007
,2021, 'Monolithic Three-Dimensional Tuning of an Atomically Defined Silicon Tunnel Junction', Nano Letters, 21, pp. 10092 - 10098, http://dx.doi.org/10.1021/acs.nanolett.1c03879
,2021, 'Coherent control of a donor-molecule electron spin qubit in silicon', Nature Communications, 12, http://dx.doi.org/10.1038/s41467-021-23662-3
,2021, 'Engineering long spin coherence times of spin–orbit qubits in silicon', Nature Materials, 20, pp. 38 - 42, http://dx.doi.org/10.1038/s41563-020-0743-3
,2020, 'Valley interference and spin exchange at the atomic scale in silicon', Nature Communications, 11, http://dx.doi.org/10.1038/s41467-020-19835-1
,2020, 'Exploiting a Single-Crystal Environment to Minimize the Charge Noise on Qubits in Silicon', Advanced Materials, 32, http://dx.doi.org/10.1002/adma.202003361
,2020, 'Quantum Computing: Exploiting a Single‐Crystal Environment to Minimize the Charge Noise on Qubits in Silicon (Adv. Mater. 40/2020)', Advanced Materials, 32, http://dx.doi.org/10.1002/adma.202070298
,2019, 'シリコン中のアクセプタ不純物スピン状態の制御による長いコヒーレンス時間の実現', , pp. 265 - 265, http://dx.doi.org/10.11316/jpsgaiyo.73.2.0_265
,