Research Data Management at UNSW

All researchers produce data, whether ‘traditional’ numbers in graphs and tables, or primary research materials such as manuscripts, text, interview transcripts, or videos.

ResData is a service provided by the UNSW Library for UNSW researchers to manage their research data. The service has two main components:

  • a platform for UNSW researchers to create and complete their Research Data Management Plans (RDMP)
  • an online ResData catalog of UNSW datasets and collections of research materials

To create/edit a Research Data Management Plan, please login to Resdata.

Why is good Data Management important?

Why is good data management important?

Effective data management underpins top level aims of good stewardship of public resources and responsible communication of research results.

Storing the right data in the right place protects staff, teaching and research work, and the University’s reputation. Failing to do so may mean re-creating documents, redoing experiments, paying to repeat procedures, hours of tedious administrative clean-up and searching through multiple backup tapes, or even retracting a published paper.

The benefits of good data management

Aside from complying with data storage requirements associated with institutional, funding and publishing bodies, there are many benefits to making the effort to establish strong research data management plans and adopt good data storage practices for your research activities. 

What's in it for you?

0
What are my data management obligations?

UNSW Data Management Policies and Procedures

In addition to the Australian Code for the Responsible Conduct of Research, UNSW researchers must manage their data in accordance with the following policies and procedures:

The UNSW Research Code of Conduct sets out requirements for minimum retention periods for data gathered as part of research conducted at the University. This means that for archival purposes, researchers must choose file formats and storage options that have the best chance of remaining accessible into the future.

Funding, Publication, and Compliance

UNSW researchers must comply with data management requirements embedded in relevant Australian and UNSW policies, as well as from funding bodies, publishers, and other organisations. Funding agencies increasingly require applicants to outline their data management plans (for data derived from the project) within the grant application. 

  • e.g. the ARC Discovery Program application now includes a ‘Management of Data’ section in which applicants must ‘outline plans for the management of data produced as a result of the proposed research, including but not limited to storage, access and re-use arrangements’. 
  • Compliance with the Australian Code for the Responsible Conduct of Research is a prerequisite for receipt of NHMRC funding.

Additionally, it is now becoming standard for publishers to require access to the data and associated metadata attached to a publication as part of the peer review process, or to publish as supplements.

0
What is a Research Data Management Plan (RDMP)?

what_is_rdmp_blue.jpg

The UNSW Research Data Management Plan (RDMP) is a document which enables UNSW researchers to consolidate and summarise information regarding the management of data for their research projects. An RDMP should be created prior to the start of the research project/activity.

The RDMP captures and records key information about your research, including:

  • Project governance: project information; i.e. what is the project title, the FOR (Field of Research) codes, the funding information, and who are the project personnel (what is their role and required level of access)?
  • Data organisation and documentation: data information; i.e. what sort of data are to be created or collected and how will data be managed?
  • Ethics, privacy and confidentiality: i.e. what are the ethics approval details and characteristics of the data?
  • Intellectual property, copyright and ownership: data ownership considerations; i.e. who owns the data and how can the data be used?
  • Data storage: retention of data; i.e. what methods will be used to retain and store the data?

Collating the above details before you start working on your RDMP can help you complete the process more efficiently.

An RDMP is a living document – once it has been created, you can continue making changes to it if, and when, you need to. Your RDMP should always contain accurate information about your research and research team and be updated regularly to reflect all changes.

0
When do I need one and How do I make one?

When do I need to complete a UNSW RDMP?

  • Prior to the start of the research project
  • To get access to the UNSW Data Archivecompletion of an RDMP is a requirement for storage allocation. 
  • When applying for funding:   
    • Some funding agencies may require a data management plan as part of the grant application. The ARC Discovery Program application now includes a ‘Management of Data’ section in which applicants must ‘outline plans for the management of data produced as a result of the proposed research, including but not limited to storage, access, and re-use arrangements’.
    • Note: if a funding agency requires a data management plan as part of the grant application, you, as the applicant, should refer to the funder’s specific requirements in the first instance.

How do I make one?

ResData is a Library service for managing UNSW research data. To create an RDMP you need to:

  1. Go to the ResData site (click HERE) and log in. 
  2. Click "Plan a project" (for research staff) or "Plan HDR Project" (For HDR students)
  3. You can start with just a few mandatory fields......and update your plan as your project continues.

Once you have created and submitted your RDMP, and if you have selected the option to store your data using the UNSW Data Archive, your request will be assessed and authorized by the project’s Lead Chief Investigator (LCI). 

Note: It is possible to create a plan without having a project in InfoED. In this case, you will need to complete some mandatory fields to create the RDMP.

ResData

0
What information do I need to complete an RDMP

Below is a checklist of all the information you will be asked while completing an RDMP.  Only sections I and II are mandatory. However, it is recommended that you work through the other sections at some point as it will help inform you on how to manage your research data properly. 

An RDMP is a living document – once it has been created, you should regularly review it and make changes, as necessary. Your RDMP should always contain accurate up-to-date information about your research project.

RDMP Sections

Required Information

Resources and Links

I. Project Details

Is the project grant-funded? What is the title of the project, the Faculty/School affiliation, and who are the project personnel (what is their role and required level of access)?

❏ Project title
❏ Project affiliation, Faculty or School
❏ Project contact details
❏ Project personnel
❏ Project description 
❏ Project Field of Research subject code(s) 

InfoEd grants management system

Data Classification Standard

Data Handling Guidelines

II. Ethics and Privacy

What are the ethics approval details of the project? What privacy, confidentiality or cultural sensitivity conditions apply to the data? What data classification level applies to the data?

❏ HREC or HREA Panel approval number and expiry date (if available)
❏ Human or animal research subjects
❏ Personal information conditions
❏ Arrangements or conditions for data privacy, confidentiality, and culturally sensitive information
❏ Data classification level

Research Ethics Compliance and Support

III. Intellectual Property and copyright

What are the data ownership considerations? Who owns the data and what is the intended use?

❏ Intellectual property and copyright conditions
❏ Third party and pre-existing data conditions or arrangements

Intellectual Property Policy

Guidelines for Copyright Ownership

IV. Data Organisation and storage

What types of data will be created? (e.g. file formats, structure, file naming conventions)?  What is your long-term data storage plan? Do you require data storage?

❏ Backup procedures
❏ Retention periods
❏ Post-project storage requirements
❏ Types of data generated
❏ Non-digital data information
❏ Software and hardware used
❏ File formats and estimated volume of research data

Procedure for Handling Research Material and Data

RDMP and the Data Archive

For any questions or assistance in creating an RDMP, please contact your Faculty Outreach Librarian.

0
What is Data Classification and which class is right for my data?

UNSW has a Data Classification Standard for assessing data sensitivity, measured by the adverse impact a breach of the data would have upon UNSW.

The following matrix provides an aid for classifying your research data. For example, if your data contains culturally sensitive information, the data is classified as ‘Highly Sensitive’. If you have concerns about classifying your research data, you should contact Data Governance Team.

  Highly Sensitive Sensitive Private Public  
Data containing culturally sensitive information

The data is classified as

highly sensitive

Not Applicable

It is possible that the data may have other requirements that are not covered in the current data classification.

  Please contact DataGov Team, if you have such unique requirements or doubts about classifying your data.

Data subjected to regulatory controls

The data is classified as

highly sensitive

Not Applicable
Data containing personal information

The data can be classified as: 

Highly Sensitive or sensitive

Not Applicable
Data containing confidential information

The data can be classified as:

highly sensitive, sensitive or private

Not Applicable
Data collected from human and/or animal participants

The data can be classified as:

highly sensitive, sensitive or private

Not Applicable
Unpublished Research Data

The data can be classified as:

highly sensitive, sensitive or private

Not Applicable
*Examples of research data classified as ‘Public’ include publicly available 3rd party datasets/Open Data, and information. However, once such datasets and information are manipulated (e.g., re-calculated, or annotated) in relation to your research project, it should be considered as unpublished research data, which is classified as ‘Private’ or higher.
 

For the purpose of selecting the data classification of your research data in the RDMP (Research Data Management Plan), please select the highest/most secure data classification level that applies to any portion of the data. For example, if the data has two portions classified as ‘Sensitive’ and ‘Highly Sensitive’ respectively, they can be handled based on their corresponding data classification. However, the data as a whole shall be classified as ‘Highly Sensitive’ in the RDMP.    

For more information, You can download our Data Classification and Management Brochure (HERE).

 

0
Where should I store my Data?

UNSW Supported Storage Platforms for Corresponding Data Classifications

Highly Sensitive Sensitive Private Public

UNSW MS OneDrive, OneNote & Teams

Note: Two-factor authentication will be rolled-out in 2018

  UNSW Data Archive, Faculty/School shared drives, & e-Notebooks

 

UNSW provides a number of approved data storage systems for our researchers. 

  • UNSW OneDrive (part of our Microsoft Licence) is suitable for project storage and collaborations. Data stored on UNSW OneDrive will be retained for at least 7 years.
  • UNSW Data Archive is suitable for long-term storage of research data. Data stored on the Archive can be retained permanently. It is suitable for use from project start as it protects data files from deletion or changes.

Some external resources suitable for research data and approved for storing of UNSW research data include:

  • Space.intersect – provided by Intersect http://www.intersect.org.au/space.  There is a cost to your project budget.  This can be cost-effective for certain types of projects and supports collaboration, virtual labs and access to computational services.
  • National data platforms -  these can be accessed directly or via Intersect and include med.data and omics.data (see http://www.intersect.org.au/data)
  • There are specialist secure options for sensitive medical data – please seek advice

We recommend seeking advice if:

  • you need a solution to manage very large datasets
  • you need a solution for highly sensitive data (medical, social, cultural etc)
  • data storage costs are a significant factor for your grant.

For further advice on data systems or options to store data contact:

0
IP, Copyright and Licencing

Intellectual Property (IP)

Intellectual property (IP) relates to the property of your mind or intellect and includes knowledge, discoveries, and inventions in material form. It includes rights in respect of inventions, copyright, trademarks, designs, patents, plant breeder’s rights, circuit layouts, know-how, trade secrets, industrial designs, reports, publications, literary and artistic works.

Copyright

Copyright is the right to reproduce, publish or distribute a work. Australian copyright law also applies to research data. Copyright cannot protect an individual ‘fact’ but can cover data compilations such as collections of sound and audio files, databases and data tables. A dataset or database can be protected by copyright if it:

  • Provides intelligible information 
  • Has not been copied 
  • Has been produced using the independent intellectual effort and creativity of the researcher(s)

Clearly stating rights and permissions in data management plans and elsewhere helps ensure that data are cited correctly and reused appropriately. There may also be requirements from institutions and funding bodies that affect data ownership, IP and copyright.

Research data created at UNSW are subject to the Intellectual Property (IP) Policy. If pre-existing datasets are used they may have their own copyright and/or licensing agreement.

Licensing

Licensing transfers some or all of the rights held by the copyright owner to a third party, such as a repository or an end user.

The Australian Copyright Council offers further information and answers to FAQs about Copyright and licensing.

0
Data Documentation and Metadata

Data documentation involves aspects such as:

  • Data collection methodology and processes
  • Variable-level documentation
  • Directory structure
  • Managing version control and file naming conventions
  • Data confidentiality
  • Access and use conditions
  • Metadata

Metadata is structured information that describes, explains, locates, or makes it easier to retrieve, use, or manage an information resource. Metadata is often defined literally as ‘data about data’.

Organising, documenting and describing data means that data will be easier to locate in the future. It can also provide context for data and the research process.

A data management plan for a research project includes the following types of metadata:

Descriptive

Project aims, keywords, details of any metadata standards, controlled vocabularies or ontologies that are used to describe the data. These may be different depending on the research discipline concerned.

See the Digital Curation Centre’s page on Disciplinary Metadata for more information and links to different standards.

Technical  Includes file formats and quality assurance processes such as calibration or validation
Administrative  Access conditions, copyright, ownership, file name conventions or directory structures
Provenance  Source or version of the data
0
Sharing, re-using and Citing Research Data

Spectrum of use

Research data are a valuable and important output of research. The collection or creation of research data often involves considerable time and effort.

  • Some data may have value that goes beyond the scope of the original project, which may not even be known at the time of the project.  

  • Collaborative research projects may also require data sharing across a group of people and/or institutions.

Spectrum of re-use

Data sharing and re-use can take a number of forms across a wide spectrum and sharing data doesn't necessarily mean providing unlimited access to all of your datasets.

Sharing data and data management

The ability of data to be effectively reused depends on good data management practices.

As part of a research data management plan, it is important to provide information that will allow the data to be accessed in the future, for re-use, to confirm or defend findings or to meet requirements from funding bodies or publishers. As part of the data management planning process, consider the following aspects of the project:

  • What data will be retained and where will they be stored
  • How much (if any) of the data can be shared or published
  • Who should be the contact person for access enquiries?
  • What sort of restrictions are there on access to data? For example, confidentiality of data that may be personally identifiable
  • Is there a relevant Creative Commons or AusGOAL licence that can define the terms of access and re-use?

Data Citation

Data citation is the practice of citing data sources for research publications, just as you would cite a paper in your own research work. This is a fairly new area, and organisations are still working out standards for identifying datasets.

Common practice is to assign a persistent digital identifier to the data, such as a Handle or Digital Object Identifier (DOI).

What is a DOI

  • A DOI is a character string used to uniquely identify an object such as an electronic document. Metadata about the object is stored in association with the DOI name and may include a location, e.g. URL, where the object can be found. The DOI remains fixed over the lifetime of the document, whereas its location and other metadata may change. Referring to an online document by its DOI provides more stable linking than simply referring to it by its URL.

  • Here is a typical example of a data citation using a DOI:

Irino, T; Tada, R (2009): Chemical and mineral compositions of sediments from ODP Site
127-797. Geological Institute, University of Tokyo. doi:10.1594/PANGAEA.726855.
http://dx.doi.org/10.1594/PANGAEA.726855

Why is Data Citation Important

  • As a researcher, you can receive attribution for publishing data through data citation
  • Mandates from publishers to cite data may apply
  • Mandates from institutions and funding bodies to make all research outputs open access may apply
  • Data citation is part of the changing nature of scholarly publishing models, driven by the development of open access repositories (institutional and subject-oriented)
  • Data citation engages with the collaborative spirit of sharing and reuse

At UNSW, the ResData system allows you to create a rich descriptive record of a dataset, and assign a Handle and/or DOI. Both identifiers will always resolve to a webpage which provides information about your dataset.

0
Additional Resources

A number of external resources are available below with useful advice and information to assist you in managing your research data:

Managing Data

  • Digital Curation Centre – What is digital curation? and How-to Guides & Checklists
  • The University of Queensland – UQ Library – Research Data Management
  • Oxford University – Infrastructure for Research Data Management:
  • Figshare allows researchers to publish all of their data in a citable, searchable and shareable manner. All data is persistently stored online under the most liberal Creative Commons license, waiving copyright where possible. This allows scientists to access and share the information from anywhere in the world with minimal friction.
  • ​​​​​​Top 10 Mistakes in Data Management

Data documentation and metadata

These resources provide further details and advice about data documentation and metadata:

Sharing and Reuse

 

0
Contacts and Further Inormation

Office of the Deputy Vice-Chancellor Research

For information regarding the research data management, please contact the Office of PVCRI (pvcresin@unsw.edu.au)

UNSW IT

Visit the Data Archive website, or contact your local IT support or the UNSW IT Service Centre (9385 1333) to obtain information and receive support for the Data Archive service.

UNSW Library

More detailed information on how to complete the RDMP is available on the Create RDMP or Create HDR thesis plan UNSW Library pages.

For assistance with the ResData service and the completion of a Research Data Management Plan(RDMP), please contact your Faculty Outreach Librarian.

IP and Copyright

For assistance with IP and Copyright issues, visit the UNSW Library Copyright page or contact your Faculty Outreach Librarian.

Visit the ANDS guide on Copyright, Data and Licensing

This site has been developed by the Division of Research, UNSW IT and the UNSW Library (including UNSW Data Management Blog).

Acknowledgment and gratitude is extended to the School of Medical Sciences for permitting the use of information from the SoMS Research Data Storage Guidelines, author Mike Williams.


Videos

Infrastructure for Research Data Management
Digital Curation Centre video on managing research data
Data Sharing and Management Snafu in 3 Short Acts
Top 10 Mistakes in Data Management