Select Publications
Preprints
2024, CMOS compatibility of semiconductor spin qubits, http://arxiv.org/abs/2409.03993v1
,2024, Violating Bell's inequality in gate-defined quantum dots, http://arxiv.org/abs/2407.15778v2
,2024, Electronic Correlations in Multielectron Silicon Quantum Dots, http://dx.doi.org/10.48550/arxiv.2407.04289
,2023, Entangling gates on degenerate spin qubits dressed by a global field, http://dx.doi.org/10.1038/s41467-024-52010-4
,2023, Real-time feedback protocols for optimizing fault-tolerant two-qubit gate fidelities in a silicon spin system, http://dx.doi.org/10.1063/5.0179958
,2023, Spatio-temporal correlations of noise in MOS spin qubits, http://arxiv.org/abs/2309.12542v2
,2023, Electrical operation of hole spin qubits in planar MOS silicon quantum dots, http://dx.doi.org/10.48550/arxiv.2309.12243
,2023, Silicon charge pump operation limit above and below liquid helium temperature, http://dx.doi.org/10.1103/PhysRevApplied.21.014040
,2023, Impact of electrostatic crosstalk on spin qubits in dense CMOS quantum dot arrays, http://dx.doi.org/10.1103/PhysRevB.110.125414
,2023, Methods for transverse and longitudinal spin-photon coupling in silicon quantum dots with intrinsic spin-orbit effect, http://arxiv.org/abs/2308.12626v1
,2023, Characterizing non-Markovian Quantum Process by Fast Bayesian Tomography, http://arxiv.org/abs/2307.12452v2
,2023, Improved Single-Shot Qubit Readout Using Twin RF-SET Charge Correlations, http://dx.doi.org/10.1103/PRXQuantum.5.010301
,2023, Path integral simulation of exchange interactions in CMOS spin qubits, http://dx.doi.org/10.1103/PhysRevB.108.155413
,2023, Electrical operation of planar Ge hole spin qubits in an in-plane magnetic field, http://dx.doi.org/10.1103/PhysRevB.108.245301
,2023, Bounds to electron spin qubit variability for scalable CMOS architectures, http://dx.doi.org/10.1038/s41467-024-48557-x
,2023, Accessing the Full Capabilities of Filter Functions: A Tool for Detailed Noise and Control Susceptibility Analysis, http://dx.doi.org/10.1103/PhysRevA.108.012426
,2022, Jellybean quantum dots in silicon for qubit coupling and on-chip quantum chemistry, http://dx.doi.org/10.1002/adma.202208557
,2022, Control of dephasing in spin qubits during coherent transport in silicon, http://dx.doi.org/10.1103/PhysRevB.107.085427
,2022, Indirect control of the 29SiV- nuclear spin in diamond, http://dx.doi.org/10.48550/arxiv.2203.10283
,2022, On-demand electrical control of spin qubits, http://dx.doi.org/10.1038/s41565-022-01280-4
,2021, Development of an Undergraduate Quantum Engineering Degree, http://dx.doi.org/10.1109/TQE.2022.3157338
,2021, Implementation of the SMART protocol for global qubit control in silicon, http://dx.doi.org/10.48550/arxiv.2108.00836
,2021, Quantum Computation Protocol for Dressed Spins in a Global Field, http://dx.doi.org/10.1103/PhysRevB.104.235411
,2021, The SMART protocol -- Pulse engineering of a global field for robust and universal quantum computation, http://dx.doi.org/10.1103/PhysRevA.104.062415
,2021, Coherent control of electron spin qubits in silicon using a global field, http://dx.doi.org/10.48550/arxiv.2107.14622
,2021, Fast Bayesian tomography of a two-qubit gate set in silicon, http://dx.doi.org/10.48550/arxiv.2107.14473
,2021, Materials for Silicon Quantum Dots and their Impact on Electron Spin Qubits, http://arxiv.org/abs/2107.13664v2
,2021, A high-sensitivity charge sensor for silicon qubits above one kelvin, http://dx.doi.org/10.48550/arxiv.2103.06433
,2020, Full configuration interaction simulations of exchange-coupled donors in silicon using multi-valley effective mass theory, http://dx.doi.org/10.48550/arxiv.2012.06293
,2020, Bell-state tomography in a silicon many-electron artificial molecule, http://dx.doi.org/10.48550/arxiv.2008.03968
,2020, Coherent spin qubit transport in silicon, http://dx.doi.org/10.48550/arxiv.2008.04020
,2020, Single-electron operation of a silicon-CMOS 2x2 quantum dot array with integrated charge sensing, http://dx.doi.org/10.48550/arxiv.2004.11558
,2020, Exchange coupling in a linear chain of three quantum-dot spin qubits in silicon, http://dx.doi.org/10.48550/arxiv.2004.07666
,2020, Pauli Blockade in Silicon Quantum Dots with Spin-Orbit Control, http://dx.doi.org/10.48550/arxiv.2004.07078
,2019, Silicon quantum processor unit cell operation above one Kelvin, http://dx.doi.org/10.48550/arxiv.1902.09126
,2019, Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot, http://dx.doi.org/10.48550/arxiv.1902.01550
,2018, Stokes-anti-Stokes correlated photon properties akin to photonic Cooper pairs, http://dx.doi.org/10.48550/arxiv.1810.12461
,2018, Lifting of Spin Blockade by Charged Impurities in Si-MOS Double Quantum Dot Devices, http://dx.doi.org/10.48550/arxiv.1807.11064
,2018, Theory of Hole-Spin Qubits in Strained Germanium Quantum Dots, http://dx.doi.org/10.48550/arxiv.1803.10320
,2017, Adequacy of Si:P Chains as Fermi-Hubbard Simulators, http://dx.doi.org/10.48550/arxiv.1712.03195
,2017, Photonic Counterparts of Cooper Pairs, http://dx.doi.org/10.48550/arxiv.1709.04520
,2016, Donors in Ge as Qubits: Establishing Physical Attributes, http://dx.doi.org/10.48550/arxiv.1608.01270
,2016, Anderson Localization of Electrons in Silicon Donor Chains, http://dx.doi.org/10.48550/arxiv.1603.06936
,2015, Donor Wavefunctions in Si Gauged by STM Images, http://dx.doi.org/10.48550/arxiv.1508.02772
,2015, Transport through an impurity tunnel coupled to a Si/SiGe quantum dot, http://dx.doi.org/10.48550/arxiv.1505.02132
,2015, Dispersively detected Pauli Spin-Blockade in a Silicon Nanowire Field-Effect Transistor, http://dx.doi.org/10.48550/arxiv.1504.02997
,2014, Theory of one and two donors in Silicon, http://dx.doi.org/10.48550/arxiv.1407.8224
,2014, Single-shot readout and relaxation of singlet/triplet states in exchange-coupled $^{31}$P electron spins in silicon, http://dx.doi.org/10.48550/arxiv.1402.7148
,2013, An Exchange-Coupled Donor Molecule in Silicon, http://dx.doi.org/10.48550/arxiv.1312.4589
,2013, Splitting Valleys in Si/SiO$_2$: Identification and Control of Interface States, http://dx.doi.org/10.48550/arxiv.1310.6878
,