Select Publications
Journal articles
2024, 'Bounds to electron spin qubit variability for scalable CMOS architectures', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-48557-x
,2024, 'Entangling gates on degenerate spin qubits dressed by a global field', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-52010-4
,2024, 'Impact of electrostatic crosstalk on spin qubits in dense CMOS quantum dot arrays', Physical Review B, 110, http://dx.doi.org/10.1103/PhysRevB.110.125414
,2024, 'Hole spins somersault in a CMOS quantum computer', Nature Physics, 20, pp. 1051 - 1052, http://dx.doi.org/10.1038/s41567-024-02556-3
,2024, 'High-fidelity spin qubit operation and algorithmic initialization above 1 K', Nature, 627, pp. 772 - 777, http://dx.doi.org/10.1038/s41586-024-07160-2
,2024, 'Silicon spin qubit noise characterization using real-time feedback protocols and wavelet analysis', Applied Physics Letters, 124, http://dx.doi.org/10.1063/5.0179958
,2024, 'Electrical operation of hole spin qubits in planar MOS silicon quantum dots', Physical Review B, 109, http://dx.doi.org/10.1103/PhysRevB.109.075427
,2024, 'Assessment of the errors of high-fidelity two-qubit gates in silicon quantum dots', Nature Physics, http://dx.doi.org/10.1038/s41567-024-02614-w
,2024, 'Improved Single-Shot Qubit Readout Using Twin rf-SET Charge Correlations', PRX Quantum, 5, http://dx.doi.org/10.1103/PRXQuantum.5.010301
,2024, 'Silicon-charge-pump operation limit above and below liquid-helium temperature', Physical Review Applied, 21, http://dx.doi.org/10.1103/PhysRevApplied.21.014040
,2023, 'Electrical operation of planar Ge hole spin qubits in an in-plane magnetic field', Physical Review B, 108, http://dx.doi.org/10.1103/PhysRevB.108.245301
,2023, 'Path-integral simulation of exchange interactions in CMOS spin qubits', Physical Review B, 108, http://dx.doi.org/10.1103/PhysRevB.108.155413
,2023, 'Accessing the full capabilities of filter functions: Tool for detailed noise and quantum control susceptibility analysis', Physical Review A, 108, http://dx.doi.org/10.1103/PhysRevA.108.012426
,2023, 'Jellybean Quantum Dots in Silicon for Qubit Coupling and On-Chip Quantum Chemistry', Advanced Materials, 35, http://dx.doi.org/10.1002/adma.202208557
,2023, 'Control of dephasing in spin qubits during coherent transport in silicon', Physical Review B, 107, http://dx.doi.org/10.1103/PhysRevB.107.085427
,2023, 'On-demand electrical control of spin qubits', Nature Nanotechnology, 18, pp. 131 - 136, http://dx.doi.org/10.1038/s41565-022-01280-4
,2023, 'The dawn of error correction with spin qubits', Nature Materials, 22, pp. 157 - 158, http://dx.doi.org/10.1038/s41563-022-01415-x
,2022, 'Coherent control of electron spin qubits in silicon using a global field', npj Quantum Information, 8, http://dx.doi.org/10.1038/s41534-022-00645-w
,2022, 'Implementation of an advanced dressing protocol for global qubit control in silicon', Applied Physics Reviews, 9, http://dx.doi.org/10.1063/5.0096467
,2022, 'Indirect control of the 29SiV- nuclear spin in diamond', Physical Review B, 105, http://dx.doi.org/10.1103/PhysRevB.105.205435
,2022, 'Fast Bayesian Tomography of a Two-Qubit Gate Set in Silicon', Physical Review Applied, 17, http://dx.doi.org/10.1103/PhysRevApplied.17.024068
,2022, 'Development of an Undergraduate Quantum Engineering Degree', IEEE Transactions on Quantum Engineering, 3, http://dx.doi.org/10.1109/TQE.2022.3157338
,2022, 'Materials for Silicon Quantum Dots and their Impact on Electron Spin Qubits', Advanced Functional Materials, 32, http://dx.doi.org/10.1002/adfm.202105488
,2021, 'Quantum computation protocol for dressed spins in a global field', Physical Review B, 104, http://dx.doi.org/10.1103/PhysRevB.104.235411
,2021, 'Bell-state tomography in a silicon many-electron artificial molecule', Nature Communications, 12, http://dx.doi.org/10.1038/s41467-021-23437-w
,2021, 'Coherent spin qubit transport in silicon', Nature Communications, 12, pp. 4114, http://dx.doi.org/10.1038/s41467-021-24371-7
,2021, 'Pulse engineering of a global field for robust and universal quantum computation', Physical Review A, 104, http://dx.doi.org/10.1103/PhysRevA.104.062415
,2021, 'A High-Sensitivity Charge Sensor for Silicon Qubits above 1 K', Nano Letters, 21, pp. 6328 - 6335, http://dx.doi.org/10.1021/acs.nanolett.1c01003
,2021, 'Full configuration interaction simulations of exchange-coupled donors in silicon using multi-valley effective mass theory', New Journal of Physics, 23, http://dx.doi.org/10.1088/1367-2630/ac0abf
,2021, 'Theory of hole-spin qubits in strained germanium quantum dots', Physical Review B, 103, http://dx.doi.org/10.1103/PhysRevB.103.125201
,2021, 'Exchange Coupling in a Linear Chain of Three Quantum-Dot Spin Qubits in Silicon', Nano Letters, 21, pp. 1517 - 1522, http://dx.doi.org/10.1021/acs.nanolett.0c04771
,2021, 'Pauli Blockade in Silicon Quantum Dots with Spin-Orbit Control', PRX Quantum, 2, http://dx.doi.org/10.1103/PRXQuantum.2.010303
,2020, 'Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot', Nature Communications, 11, http://dx.doi.org/10.1038/s41467-019-14053-w
,2020, 'Single-electron operation of a silicon-CMOS 2 × 2 quantum dot array with integrated charge sensing', Nano Letters, 20, pp. 7882 - 7888, http://dx.doi.org/10.1021/acs.nanolett.0c02397
,2020, 'Operation of a silicon quantum processor unit cell above one kelvin', Nature, 580, pp. 350 - 354, http://dx.doi.org/10.1038/s41586-020-2171-6
,2020, 'Lifting of spin blockade by charged impurities in Si-MOS double quantum dot devices', Physical Review B, 101, http://dx.doi.org/10.1103/PhysRevB.101.155411
,2020, 'A Model of Energy Dissipation for the Mode of Rupture of Shallow Foundations in Sandy Soils', Soils and Rocks, 43, pp. 141 - 149, http://dx.doi.org/10.28927/SR.431141
,2019, 'Physical Properties of Photonic Cooper Pairs Generated via Correlated Stokes–anti-Stokes Raman Scattering', Physica Status Solidi (B) Basic Research, 256, http://dx.doi.org/10.1002/pssb.201900218
,2019, 'Stokes-anti-Stokes correlated photon properties akin to photonic Cooper pairs', Physical Review B, 99, http://dx.doi.org/10.1103/PhysRevB.99.100503
,2018, 'Adequacy of Si:P chains as Fermi-Hubbard simulators', npj Quantum Information, 4, http://dx.doi.org/10.1038/s41534-017-0051-1
,2017, 'Photonic Counterparts of Cooper Pairs', Physical Review Letters, 119, http://dx.doi.org/10.1103/PhysRevLett.119.193603
,2016, 'Temporal Quantum Correlations in Inelastic Light Scattering from Water', Physical Review Letters, 117, http://dx.doi.org/10.1103/PhysRevLett.117.243603
,2016, 'Donors in Ge as qubits-Establishing physical attributes', EPL, 116, http://dx.doi.org/10.1209/0295-5075/116/20002
,2016, 'Mitigating valley-driven localization in atomically thin dopant chains in Si', Physical Review B, 94, http://dx.doi.org/10.1103/PhysRevB.94.115425
,2016, 'Donor wave functions in Si gauged by STM images', Physical Review B, 93, http://dx.doi.org/10.1103/PhysRevB.93.045303
,2015, 'Transport through an impurity tunnel coupled to a Si/SiGe quantum dot', Applied Physics Letters, 107, http://dx.doi.org/10.1063/1.4930909
,2015, 'Dispersively Detected Pauli Spin-Blockade in a Silicon Nanowire Field-Effect Transistor', Nano Letters, 15, pp. 4622 - 4627, http://dx.doi.org/10.1021/acs.nanolett.5b01306
,2015, 'Theory of one and two donors in silicon', Journal of Physics Condensed Matter, 27, http://dx.doi.org/10.1088/0953-8984/27/15/154208
,2014, 'An exchange-coupled donor molecule in silicon', Nano Letters, 14, pp. 5672 - 5676, http://dx.doi.org/10.1021/nl5023942
,2014, 'Single-shot readout and relaxation of singlet and triplet states in exchange-coupled P 31 electron spins in silicon', Physical Review Letters, 112, http://dx.doi.org/10.1103/PhysRevLett.112.236801
,