Select Publications
Book Chapters
2009, 'Measuring the Charge and Spin States of Electrons on Individual Dopant Atoms in Silicon', in Electron Spin Resonance and Related Phenomena in Low-Dimensional Structures, Springer, Germany, pp. 169 - 182, http://dx.doi.org/10.1007/978-3-540-79365-6_9
,Journal articles
2024, 'A singlet-triplet hole-spin qubit in MOS silicon', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-51902-9
,2024, 'Bounds to electron spin qubit variability for scalable CMOS architectures', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-48557-x
,2024, 'Entangling gates on degenerate spin qubits dressed by a global field', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-52010-4
,2024, 'Navigating the 16-dimensional Hilbert space of a high-spin donor qudit with electric and magnetic fields', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-45368-y
,2024, 'Tomography of entangling two-qubit logic operations in exchange-coupled donor electron spin qubits', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-52795-4
,2024, 'Assessment of the errors of high-fidelity two-qubit gates in silicon quantum dots', Nature Physics, 20, pp. 1804 - 1809, http://dx.doi.org/10.1038/s41567-024-02614-w
,2024, 'Impact of electrostatic crosstalk on spin qubits in dense CMOS quantum dot arrays', Physical Review B, 110, http://dx.doi.org/10.1103/PhysRevB.110.125414
,2024, 'High-fidelity spin qubit operation and algorithmic initialization above 1 K', Nature, 627, pp. 772 - 777, http://dx.doi.org/10.1038/s41586-024-07160-2
,2024, 'Silicon spin qubit noise characterization using real-time feedback protocols and wavelet analysis', Applied Physics Letters, 124, http://dx.doi.org/10.1063/5.0179958
,2024, 'Improved Placement Precision of Donor Spin Qubits in Silicon using Molecule Ion Implantation', Advanced Quantum Technologies, 7, http://dx.doi.org/10.1002/qute.202300316
,2024, 'Improved Single-Shot Qubit Readout Using Twin rf-SET Charge Correlations', PRX Quantum, 5, http://dx.doi.org/10.1103/PRXQuantum.5.010301
,2024, 'Silicon-charge-pump operation limit above and below liquid-helium temperature', Physical Review Applied, 21, http://dx.doi.org/10.1103/PhysRevApplied.21.014040
,2023, 'Jellybean Quantum Dots in Silicon for Qubit Coupling and On-Chip Quantum Chemistry', Advanced Materials, 35, http://dx.doi.org/10.1002/adma.202208557
,2023, 'Combining n-MOS Charge Sensing with p-MOS Silicon Hole Double Quantum Dots in a CMOS platform', Nano Letters, 23, pp. 1261 - 1266, http://dx.doi.org/10.1021/acs.nanolett.2c04417
,2023, 'Control of dephasing in spin qubits during coherent transport in silicon', Physical Review B, 107, http://dx.doi.org/10.1103/PhysRevB.107.085427
,2023, 'An electrically driven single-atom “flip-flop” qubit', Science Advances, 9, http://dx.doi.org/10.1126/sciadv.add9408
,2023, 'On-demand electrical control of spin qubits', Nature Nanotechnology, 18, pp. 131 - 136, http://dx.doi.org/10.1038/s41565-022-01280-4
,2022, 'Coherent control of electron spin qubits in silicon using a global field', npj Quantum Information, 8, http://dx.doi.org/10.1038/s41534-022-00645-w
,2022, 'Beating the Thermal Limit of Qubit Initialization with a Bayesian Maxwell's Demon', Physical Review X, 12, http://dx.doi.org/10.1103/PhysRevX.12.041008
,2022, 'Implementation of an advanced dressing protocol for global qubit control in silicon', Applied Physics Reviews, 9, http://dx.doi.org/10.1063/5.0096467
,2022, 'Fast Bayesian Tomography of a Two-Qubit Gate Set in Silicon', Physical Review Applied, 17, http://dx.doi.org/10.1103/PhysRevApplied.17.024068
,2022, 'Precision tomography of a three-qubit donor quantum processor in silicon', Nature, 601, pp. 348 - 353, http://dx.doi.org/10.1038/s41586-021-04292-7
,2021, 'Electrical control of the g tensor of the first hole in a silicon MOS quantum dot', Physical Review B, 104, http://dx.doi.org/10.1103/PhysRevB.104.235303
,2021, 'Bell-state tomography in a silicon many-electron artificial molecule', Nature Communications, 12, http://dx.doi.org/10.1038/s41467-021-23437-w
,2021, 'Coherent spin qubit transport in silicon', Nature Communications, 12, pp. 4114, http://dx.doi.org/10.1038/s41467-021-24371-7
,2021, 'Conditional quantum operation of two exchange-coupled single-donor spin qubits in a MOS-compatible silicon device', Nature Communications, 12, pp. 181, http://dx.doi.org/10.1038/s41467-020-20424-5
,2021, 'Implementation of the SMART protocol for global qubit control in silicon', Applied Physics Reviews, 9, pp. 031409, http://dx.doi.org/10.1063/5.0096467
,2021, 'Single-electron spin resonance in a nanoelectronic device using a global field', Science Advances, 7, http://dx.doi.org/10.1126/sciadv.abg9158
,2021, 'Fast Bayesian tomography of a two-qubit gate set in silicon', Phys. Rev. Applied, 17, pp. 024068, http://dx.doi.org/10.1103/PhysRevApplied.17.024068
,2021, 'A High-Sensitivity Charge Sensor for Silicon Qubits above 1 K', Nano Letters, 21, pp. 6328 - 6335, http://dx.doi.org/10.1021/acs.nanolett.1c01003
,2021, 'Precision tomography of a three-qubit donor quantum processor in silicon', Nature, 601, pp. 348, http://dx.doi.org/10.1038/s41586-021-04292-7
,2021, 'Exchange Coupling in a Linear Chain of Three Quantum-Dot Spin Qubits in Silicon', Nano Letters, 21, pp. 1517 - 1522, http://dx.doi.org/10.1021/acs.nanolett.0c04771
,2021, 'Pauli Blockade in Silicon Quantum Dots with Spin-Orbit Control', PRX Quantum, 2, http://dx.doi.org/10.1103/PRXQuantum.2.010303
,2020, 'Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot', Nature Communications, 11, http://dx.doi.org/10.1038/s41467-019-14053-w
,2020, 'Controllable freezing of the nuclear spin bath in a single-atom spin qubit', Science Advances, 6, http://dx.doi.org/10.1126/sciadv.aba3442
,2020, 'Operation of a silicon quantum processor unit cell above one kelvin', Nature, 580, pp. 350 - 354, http://dx.doi.org/10.1038/s41586-020-2171-6
,2020, 'Coherent electrical control of a single high-spin nucleus in silicon', Nature, 579, pp. 205 - 209, http://dx.doi.org/10.1038/s41586-020-2057-7
,2020, 'A silicon quantum-dot-coupled nuclear spin qubit', Nature Nanotechnology, 15, pp. 13 - 17, http://dx.doi.org/10.1038/s41565-019-0587-7
,2019, 'Single-spin qubits in isotopically enriched silicon at low magnetic field', Nature Communications, 10, http://dx.doi.org/10.1038/s41467-019-13416-7
,2019, 'Fidelity benchmarks for two-qubit gates in silicon', Nature, 569, pp. 532 - 536, http://dx.doi.org/10.1038/s41586-019-1197-0
,2019, 'Electron spin relaxation of single phosphorus donors in metal-oxide-semiconductor nanoscale devices', Physical Review B, 99, http://dx.doi.org/10.1103/PhysRevB.99.205306
,2019, 'Controlling Spin-Orbit Interactions in Silicon Quantum Dots Using Magnetic Field Direction', Physical Review X, 9, http://dx.doi.org/10.1103/PhysRevX.9.021028
,2019, 'Gate-based single-shot readout of spins in silicon', Nature Nanotechnology, 14, pp. 437 - 441, http://dx.doi.org/10.1038/s41565-019-0400-7
,2019, 'Silicon qubit fidelities approaching incoherent noise limits via pulse engineering', Nature Electronics, 2, pp. 151 - 158, http://dx.doi.org/10.1038/s41928-019-0234-1
,2018, 'Integrated silicon qubit platform with single-spin addressability, exchange control and single-shot singlet-triplet readout', Nature Communications, 9, http://dx.doi.org/10.1038/s41467-018-06039-x
,2018, 'Spin and orbital structure of the first six holes in a silicon metal-oxide-semiconductor quantum dot', Nature Communications, 9, http://dx.doi.org/10.1038/s41467-018-05700-9
,2018, 'Assessment of a Silicon Quantum Dot Spin Qubit Environment via Noise Spectroscopy', Physical Review Applied, 10, http://dx.doi.org/10.1103/PhysRevApplied.10.044017
,2018, 'Coherent control via weak measurements in P 31 single-atom electron and nuclear spin qubits', Physical Review B, 98, http://dx.doi.org/10.1103/PhysRevB.98.155201
,2018, 'Gigahertz Single-Electron Pumping Mediated by Parasitic States', Nano Letters, 18, pp. 4141 - 4147, http://dx.doi.org/10.1021/acs.nanolett.8b00874
,