Select Publications
Books
2011, Getting Started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox, http://www.teos-10.org/pubs/Getting_Started.pdf
,2010, IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties, Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English)
,Book Chapters
2021, 'Mixing at the ocean’s bottom boundary', in Ocean Mixing: Drivers, Mechanisms and Impacts, pp. 145 - 180, http://dx.doi.org/10.1016/B978-0-12-821512-8.00014-1
,2019, 'Neutral surfaces in the ocean, and the equation of state of seawater', in Encyclopedia of Ocean Sciences, pp. 128 - 134, http://dx.doi.org/10.1016/B978-0-12-409548-9.11641-0
,2019, 'Neutral Surfaces in the Ocean, and the Equation of State of Seawater', in Encyclopedia of Ocean Sciences, Third Edition: Volume 1-5, pp. V3-128-V3-134, http://dx.doi.org/10.1016/B978-0-12-409548-9.11641-0
,2013, 'Chapter 6 Thermodynamics of Seawater', in Ocean Circulation and Climate - A 21st Century Perspective, Elsevier, pp. 141 - 158, http://dx.doi.org/10.1016/b978-0-12-391851-2.00006-4
,2013, 'Thermodynamics of Seawater', in Siedler G; Griffies S; Gould J; Church J (ed.), Open Circulation and Climate, Academic Press, pp. 141 - 158
,2009, 'Neutral Surfaces and the Equation of State', in Encyclopedia of Ocean Sciences, pp. 25 - 31, http://dx.doi.org/10.1016/B978-012374473-9.00802-X
,2004, 'Forward to the book Fundamentals of Ocean Climate Models by SM Griffies', in Forward to the book Fundamentals of Ocean Climate Models by SM Griffies, Princeton University Press, Princeton, USA, pp. xxxiv
,2001, 'Mixing and stirring in the ocean interior', in Siedler G; Church JA; Gould J (ed.), Ocean Circulation and Climate, Academic Press, pp. 337 - 355
,1998, 'Three-Dimensional Residual-Mean Theory', in Chassignet EP; Verron J (ed.), Ocean Modelling and Parameterization, pp. 269 - 302
,1996, 'Global sea level rise', in Pittock AB; Whetton PH; Hennessey KJ (ed.), Climate Impacts Assessment: Development and Application of Climate Change Scenarios, pp. 43 - 46
,1988, 'Small-scale turbulence and mixing in the ocean: A glossary', in Nihoul JCJ; Jamart BM (ed.), Small-Scale Turbulence and Mixing in the Ocean, Elsevier
,1988, 'Some Implications of Ocean Mixing for Ocean Modelling', in Nihoul JCJ; Jamart BM (ed.), Small-scale turbulence and mixing in the ocean, Elsevier, pp. 21 - 35
,Journal articles
2024, 'Angus McEwan 1937–2018', Historical Records of Australian Science, http://dx.doi.org/10.1071/hr24005
,2023, 'A thermodynamic potential of seawater in terms of Absolute Salinity, Conservative Temperature, and in situ pressure', Ocean Science, 19, pp. 1719 - 1841, http://dx.doi.org/10.5194/os-19-1719-2023
,2023, 'North Atlantic Ocean Circulation and Related Exchange of Heat and Salt Between Water Masses', Geophysical Research Letters, 50, http://dx.doi.org/10.1029/2022GL100989
,2023, 'Spurious Dianeutral Advection and Methods for Its Minimization', Journal of Physical Oceanography, 53, pp. 1401 - 1427, http://dx.doi.org/10.1175/JPO-D-22-0174.1
,2023, 'Heat stored in the Earth system 1960-2020: where does the energy go?', Earth System Science Data, 15, pp. 1675 - 1709, http://dx.doi.org/10.5194/essd-15-1675-2023
,2022, 'Sensitivity of Observationally Based Estimates of Ocean Heat Content and Thermal Expansion to Vertical Interpolation Schemes', Geophysical Research Letters, 49, http://dx.doi.org/10.1029/2022GL101079
,2022, 'The downward spiralling nature of the North Atlantic Subtropical Gyre', Nature Communications, 13, http://dx.doi.org/10.1038/s41467-022-29607-8
,2022, 'Sensitivity of a Coarse-Resolution Global Ocean Model to a Spatially Variable Neutral Diffusivity', Journal of Advances in Modeling Earth Systems, 14, http://dx.doi.org/10.1029/2021MS002914
,2021, 'The interpretation of temperature and salinity variables in numerical ocean model output and the calculation of heat fluxes and heat content', Geoscientific Model Development, 14, pp. 6445 - 6466, http://dx.doi.org/10.5194/gmd-14-6445-2021
,2021, 'Algorithmic Improvements to Finding Approximately Neutral Surfaces', Journal of Advances in Modeling Earth Systems, 13, http://dx.doi.org/10.1029/2020MS002436
,2021, 'Spice Variables and Their Use in Physical Oceanography', Journal of Geophysical Research: Oceans, 126, http://dx.doi.org/10.1029/2019JC015936
,2021, 'The interpretation of temperature and salinity variables in numerical ocean model output, and the calculation of heat fluxes and heat content', , http://dx.doi.org/10.5194/gmd-2020-426
,2020, 'Rejection from Ocean Science', , http://dx.doi.org/10.5194/os-2020-42-ec2
,2020, 'Diapycnal transport near a sloping bottom boundary', Journal of Physical Oceanography, 50, pp. 3253 - 3266, http://dx.doi.org/10.1175/JPO-D-20-0066.1
,2020, 'Editorial Comment', , http://dx.doi.org/10.5194/os-2020-42-ec1
,2020, 'Full-Depth Global Estimates of Ocean Mesoscale Eddy Mixing From Observations and Theory', Geophysical Research Letters, 47, http://dx.doi.org/10.1029/2020GL089425
,2020, 'Two interpolation methods using multiply-rotated piecewise cubic hermite interpolating polynomials', Journal of Atmospheric and Oceanic Technology, 37, pp. 605 - 619, http://dx.doi.org/10.1175/JTECH-D-19-0211.1
,2020, 'The spiralling North Atlantic Subtropical Gyre', , http://dx.doi.org/10.5194/egusphere-egu2020-1459
,2020, 'VENM: An Algorithm to Accurately Calculate Neutral Slopes and Gradients', , http://dx.doi.org/10.5194/egusphere-egu2020-5618
,2020, 'A pressure-invariant neutral density variable for the world’s oceans', Journal of Physical Oceanography, 50, pp. 3585 - 3604, http://dx.doi.org/10.1175/JPO-D-19-0321.1
,2019, 'An accelerated version of Newton's method with convergence order 3+1', Results in Applied Mathematics, 4, http://dx.doi.org/10.1016/j.rinam.2019.100078
,2019, 'IAPSO: Tales from the ocean frontier', History of Geo- and Space Sciences, 10, pp. 137 - 150, http://dx.doi.org/10.5194/hgss-10-137-2019
,2019, 'Horizontal residual mean: Addressing the limited spatial resolution of ocean models', Journal of Physical Oceanography, 49, pp. 2741 - 2759, http://dx.doi.org/10.1175/JPO-D-19-0092.1
,2019, 'Thermodynamics of Sea Ice Phase Composition Revisited', Journal of Geophysical Research: Oceans, 124, pp. 615 - 634, http://dx.doi.org/10.1029/2018JC014611
,2019, 'Tracer transport within abyssal mixing layers', Journal of Physical Oceanography, 49, pp. 2669 - 2695, http://dx.doi.org/10.1175/JPO-D-19-0006.1
,2019, 'VENM: An Algorithm to Accurately Calculate Neutral Slopes and Gradients', Journal of Advances in Modeling Earth Systems, 11, pp. 1917 - 1939, http://dx.doi.org/10.1029/2019MS001613
,2018, 'Ridges, seamounts, troughs, and bowls: Topographic control of the dianeutral circulation in the abyssal ocean', Journal of Physical Oceanography, 48, pp. 861 - 882, http://dx.doi.org/10.1175/JPO-D-17-0141.1
,2018, 'Reply to "Comment on 'Abyssal upwelling and downwelling driven by near-boundary mixing'"', Journal of Physical Oceanography, 48, pp. 749 - 753, http://dx.doi.org/10.1175/JPO-D-17-0227.1
,2017, 'Abyssal ocean overturning shaped by seafloor distribution', Nature, 551, pp. 181 - 186, http://dx.doi.org/10.1038/nature24472
,2017, 'Stabilizing hydrographic profiles with minimal change to the water masses', Journal of Atmospheric and Oceanic Technology, 34, pp. 1935 - 1945, http://dx.doi.org/10.1175/JTECH-D-16-0111.1
,2017, 'Comment on tailleux, R. neutrality versus materiality: A thermodynamic theory of neutral surfaces. Fluids 2016, 1, 32', Fluids, 2, http://dx.doi.org/10.3390/fluids2020019
,2017, 'Mixing inferred from an ocean climatology and surface fluxes', Journal of Physical Oceanography, 47, pp. 667 - 687, http://dx.doi.org/10.1175/JPO-D-16-0125.1
,2017, 'Abyssal upwelling and downwelling driven by near-boundary mixing', Journal of Physical Oceanography, 47, pp. 261 - 283, http://dx.doi.org/10.1175/JPO-D-16-0082.1
,2016, 'OMIP contribution to CMIP6: Experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project', Geoscientific Model Development, 9, pp. 3231 - 3296, http://dx.doi.org/10.5194/gmd-9-3231-2016
,2016, 'Turning ocean mixing upside down', Journal of Physical Oceanography, 46, pp. 2239 - 2261, http://dx.doi.org/10.1175/JPO-D-15-0244.1
,2016, 'Semicompressible ocean thermodynamics and Boussinesq energy conservation', Fluids, 1, http://dx.doi.org/10.3390/fluids1020009
,