Select Publications
Preprints
2023, Breast cancer histopathology image-based gene expression prediction using spatial transcriptomics data and deep learning, http://dx.doi.org/10.21203/rs.3.rs-2983276/v1
,2023, Breast Cancer Histopathology Image based Gene Expression Prediction using Spatial Transcriptomics data and Deep Learning, http://dx.doi.org/10.1038/s41598-023-40219-0
,2023, ACTIVE: A Deep Model for Sperm and Impurity Detection in Microscopic Videos, http://dx.doi.org/10.48550/arxiv.2301.06002
,2022, Segmentation of Weakly Visible Environmental Microorganism Images Using Pair-wise Deep Learning Features, http://dx.doi.org/10.48550/arxiv.2208.14957
,2022, IL-MCAM: An interactive learning and multi-channel attention mechanism-based weakly supervised colorectal histopathology image classification approach, http://dx.doi.org/10.48550/arxiv.2206.03368
,2022, CVM-Cervix: A Hybrid Cervical Pap-Smear Image Classification Framework Using CNN, Visual Transformer and Multilayer Perceptron, http://dx.doi.org/10.48550/arxiv.2206.00971
,2022, An application of Pixel Interval Down-sampling (PID) for dense tiny microorganism counting on environmental microorganism images, http://dx.doi.org/10.48550/arxiv.2204.01341
,2022, A Comprehensive Survey with Quantitative Comparison of Image Analysis Methods for Microorganism Biovolume Measurements, http://dx.doi.org/10.48550/arxiv.2202.09020
,2022, EBHI:A New Enteroscope Biopsy Histopathological H&E Image Dataset for Image Classification Evaluation, http://dx.doi.org/10.48550/arxiv.2202.08552
,2022, What Can Machine Vision Do for Lymphatic Histopathology Image Analysis: A Comprehensive Review, http://dx.doi.org/10.48550/arxiv.2201.08550
,2021, EMDS-6: Environmental Microorganism Image Dataset Sixth Version for Image Denoising, Segmentation, Feature Extraction, Classification and Detection Methods Evaluation, http://dx.doi.org/10.48550/arxiv.2112.07111
,2021, A Comparative Study of Deep Learning Classification Methods on a Small Environmental Microorganism Image Dataset (EMDS-6): from Convolutional Neural Networks to Visual Transformers, http://dx.doi.org/10.48550/arxiv.2107.07699
,2021, GasHisSDB: A New Gastric Histopathology Image Dataset for Computer Aided Diagnosis of Gastric Cancer, http://dx.doi.org/10.48550/arxiv.2106.02473
,2021, A State-of-the-art Survey of Object Detection Techniques in Microorganism Image Analysis: From Classical Methods to Deep Learning Approaches, http://dx.doi.org/10.48550/arxiv.2105.03148
,2021, GasHis-Transformer: A Multi-scale Visual Transformer Approach for Gastric Histopathological Image Detection, http://dx.doi.org/10.48550/arxiv.2104.14528
,2021, A Comprehensive Review of Image Analysis Methods for Microorganism Counting: From Classical Image Processing to Deep Learning Approaches, http://arxiv.org/abs/2103.13625v4
,2021, DeepCervix: A Deep Learning-based Framework for the Classification of Cervical Cells Using Hybrid Deep Feature Fusion Techniques, http://dx.doi.org/10.1016/j.compbiomed.2021.104649
,2021, A Comprehensive Review of Computer-aided Whole-slide Image Analysis: from Datasets to Feature Extraction, Segmentation, Classification, and Detection Approaches, http://arxiv.org/abs/2102.10553v1
,2021, A Hierarchical Conditional Random Field-based Attention Mechanism Approach for Gastric Histopathology Image Classification, http://arxiv.org/abs/2102.10499v2
,2021, EMDS-5: Environmental Microorganism Image Dataset Fifth Version for Multiple Image Analysis Tasks, http://dx.doi.org/10.1371/journal.pone.0250631
,2020, A Comprehensive Review for MRF and CRF Approaches in Pathology Image Analysis, http://dx.doi.org/10.1007/s11831-021-09591-w
,2020, A Comprehensive Review for Breast Histopathology Image Analysis Using Classical and Deep Neural Networks, http://dx.doi.org/10.48550/arxiv.2003.12255
,