Select Publications

Journal articles

Dastafkan K; Wang S; Song S; Meyer Q; Zhang Q; Shen Y; Zhao C, 2023, 'Operando monitoring of gas bubble evolution in water electrolysis by single high-frequency impedance', EES Catalysis, 1, pp. 998 - 1008, http://dx.doi.org/10.1039/d3ey00182b

Zhou B; Hu A; Zeng X; He M; Li R; Zhao C; Yan Z; Pan Y; Chen J; Fan Y; Liu M; Long J, 2022, 'Constructing fast ion-transport channels for reversible zinc metal anodes enabled by self-concentration effect', Chemical Engineering Journal, 450, http://dx.doi.org/10.1016/j.cej.2022.137921

Zhao X; Gao T; Ren W; Zhao C; Liu ZH; Li L, 2022, 'Highly active CoP-Co2N confined in nanocarbon enabling efficient electrocatalytic immobilizing-conversion of polysulfide targeting high-rate lithium-sulfur batteries', Journal of Energy Chemistry, 75, pp. 250 - 259, http://dx.doi.org/10.1016/j.jechem.2022.08.033

Wu S; Chen J; Su Z; Guo H; Zhao T; Jia C; Stansby J; Tang J; Rawal A; Fang Y; Ho J; Zhao C, 2022, 'Molecular Crowding Electrolytes for Stable Proton Batteries', Small, 18, http://dx.doi.org/10.1002/smll.202202992

Guo H; Wan L; Tang J; Wu S; Su Z; Sharma N; Fang Y; Liu Z; Zhao C, 2022, 'Stable colloid-in-acid electrolytes for long life proton batteries', Nano Energy, 102, http://dx.doi.org/10.1016/j.nanoen.2022.107642

Zhao C; Sharma N, 2022, 'Editorial overview: Electrochemical materials and engineering 2022 Energy materials and concepts that enable a green and clean future', Current Opinion in Electrochemistry, 35, http://dx.doi.org/10.1016/j.coelec.2022.101076

Zhao T; Wang S; Li Y; Jia C; Su Z; Hao D; Ni BJ; Zhang Q; Zhao C, 2022, 'Heterostructured V-Doped Ni2P/Ni12P5 Electrocatalysts for Hydrogen Evolution in Anion Exchange Membrane Water Electrolyzers', Small, 18, http://dx.doi.org/10.1002/smll.202204758

Jia C; Shi Z; Zhao C, 2022, 'The porosity engineering for single-atom metal-nitrogen-carbon catalysts for the electroreduction of CO2', Current Opinion in Green and Sustainable Chemistry, 37, http://dx.doi.org/10.1016/j.cogsc.2022.100651

Wen X; Du D; Ren L; Xu H; Li R; Zhao C; Shu C, 2022, 'Creating low coordination atoms on MoS2/NiS2 heterostructure toward modulating the adsorption of oxygenated intermediates in lithium-oxygen batteries', Chemical Engineering Journal, 442, http://dx.doi.org/10.1016/j.cej.2022.136311

Li M; Yang K; Abdinejad M; Zhao C; Burdyny T, 2022, 'Advancing integrated CO2 electrochemical conversion with amine-based CO2 capture: a review', Nanoscale, 14, pp. 11892 - 11908, http://dx.doi.org/10.1039/d2nr03310k

Bo X; Zan L; Jia R; Dastafkan K; Zhao C, 2022, 'The nature of synergistic effects in transition metal oxides/in-situ intermediate-hydroxides for enhanced oxygen evolution reaction', Current Opinion in Electrochemistry, 34, http://dx.doi.org/10.1016/j.coelec.2022.100987

Müller-Hülstede J; Zierdt T; Schmies H; Schonvogel D; Meyer Q; Zhao C; Wagner P; Wark M, 2022, 'Implementation of different Fe–N–C catalysts in high temperature proton exchange membrane fuel cells – Effect of catalyst and catalyst layer on performance', Journal of Power Sources, 537, http://dx.doi.org/10.1016/j.jpowsour.2022.231529

Zhao C; Long J; Zhou B; Zheng R; He M; Li R; Pan Y; Hu A; Shu C, 2022, 'Accelerating the reaction kinetics of lithium-oxygen chemistry by modulating electron acceptance-donation interaction in electrocatalysts', Journal of Materials Chemistry A, 10, pp. 17267 - 17278, http://dx.doi.org/10.1039/d2ta04418h

Xiao Y; Dastafkan K; Li Y; Zhao T; Su Z; Qi H; Zhao C, 2022, 'Oxygen Corrosion Engineering of Nonprecious Ternary Metal Hydroxides toward Oxygen Evolution Reaction', ACS Sustainable Chemistry and Engineering, 10, pp. 8597 - 8604, http://dx.doi.org/10.1021/acssuschemeng.2c02114

Xu H; Zheng R; Du D; Ren L; Li R; Wen X; Zhao C; Zeng T; Zhou B; Shu C, 2022, 'Cationic vanadium vacancy-enriched V2−xO5 on V2C MXene as superior bifunctional electrocatalysts for Li-O2 batteries', Science China Materials, 65, pp. 1761 - 1770, http://dx.doi.org/10.1007/s40843-021-1959-1

Sun Q; Jia C; Zhao Y; Zhao C, 2022, 'Single atom-based catalysts for electrochemical CO2 reduction', Chinese Journal of Catalysis, 43, pp. 1547 - 1597, http://dx.doi.org/10.1016/S1872-2067(21)64000-7

Ren W; Tan X; Jia C; Krammer A; Sun Q; Qu J; Smith SC; Schueler A; Hu X; Zhao C, 2022, 'Electronic Regulation of Nickel Single Atoms by Confined Nickel Nanoparticles for Energy-Efficient CO2 Electroreduction', Angewandte Chemie - International Edition, 61, http://dx.doi.org/10.1002/anie.202203335

Ren W; Tan X; Jia C; Krammer A; Sun Q; Qu J; Smith SC; Schueler A; Hu X; Zhao C, 2022, 'Electronic Regulation of Nickel Single Atoms by Confined Nickel Nanoparticles for Energy‐Efficient CO2 Electroreduction', Angewandte Chemie, 134, http://dx.doi.org/10.1002/ange.202203335

Meyer Q; Liu S; Li Y; Zhao C, 2022, 'Operando detection of oxygen reduction reaction kinetics of Fe–N–C catalysts in proton exchange membrane fuel cells', Journal of Power Sources, 533, http://dx.doi.org/10.1016/j.jpowsour.2022.231058

Su Z; Chen J; Stansby J; Jia C; Zhao T; Tang J; Fang Y; Rawal A; Ho J; Zhao C, 2022, 'Hydrogen-Bond Disrupting Electrolytes for Fast and Stable Proton Batteries', Small, 18, http://dx.doi.org/10.1002/smll.202201449

Li R; Long J; Li M; Du D; Ren L; Zhou B; Zhao C; Xu H; Wen X; Zeng T; Shu C, 2022, 'Sulfur-doped LaNiO3 perovskite oxides with enriched anionic vacancies and manipulated orbital occupancy facilitating oxygen electrode reactions in lithium-oxygen batteries', Materials Today Chemistry, 24, http://dx.doi.org/10.1016/j.mtchem.2022.100889

Xu H; Zheng R; Du D; Ren L; Li R; Wen X; Zhao C; Shu C, 2022, 'V2C MXene enriched with -O termination as high-efficiency electrocatalyst for lithium-oxygen battery', Applied Materials Today, 27, http://dx.doi.org/10.1016/j.apmt.2022.101464

Zhao H; Yang S; Yang W; Zhao C; Cao M; Cao R, 2022, 'Ultrasmall Mo2C Embedded in N-Doped Holey Carbon for High-Efficiency Electrochemical Oxygen Reduction Reaction', ChemElectroChem, 9, http://dx.doi.org/10.1002/celc.202200141

Tang K; Meyer Q; White R; Armstrong RT; Mostaghimi P; Da Wang Y; Liu S; Zhao C; Regenauer-Lieb K; Tung PKM, 2022, 'Deep learning for full-feature X-ray microcomputed tomography segmentation of proton electron membrane fuel cells', Computers and Chemical Engineering, 161, http://dx.doi.org/10.1016/j.compchemeng.2022.107768

Rong C; Shen X; Wang Y; Thomsen L; Zhao T; Li Y; Lu X; Amal R; Zhao C, 2022, 'Electronic Structure Engineering of Single-Atom Ru Sites via Co–N4 Sites for Bifunctional pH-Universal Water Splitting', Advanced Materials, 34, http://dx.doi.org/10.1002/adma.202110103

Sun Q; Zhao Y; Ren W; Zhao C, 2022, 'Electroreduction of low concentration CO2 at atomically dispersed Ni-N-C catalysts with nanoconfined ionic liquids', Applied Catalysis B: Environmental, 304, http://dx.doi.org/10.1016/j.apcatb.2021.120963

Zhang Y; Chen X; Cen W; Ren W; Guo H; Wu S; Xiao Y; Chen S; Guo Y; Xiao D; Zhao C, 2022, 'Flash-assisted doping graphene for ultrafast potassium transport', Nano Research, 15, pp. 4083 - 4090, http://dx.doi.org/10.1007/s12274-021-4023-6

Chen C; He S; Dastafkan K; Zou Z; Wang Q; Zhao C, 2022, 'Sea urchin-like NiMoO4 nanorod arrays as highly efficient bifunctional catalysts for electrocatalytic/photovoltage-driven urea electrolysis', Chinese Journal of Catalysis, 43, pp. 1267 - 1276, http://dx.doi.org/10.1016/S1872-2067(21)63962-1

Wen X; Ran Z; Zheng R; Du D; Zhao C; Li R; Xu H; Zeng T; Shu C, 2022, 'NiSe2@NiO heterostructure with optimized electronic structure as efficient electrocatalyst for lithium-oxygen batteries', Journal of Alloys and Compounds, 901, http://dx.doi.org/10.1016/j.jallcom.2022.163703

Tang J; Zhai B; Liu X; Liu J; Zhao C; Fang Y, 2022, 'Interfacially confined preparation of copper Porphyrin-contained nanofilms towards High-performance Strain-Pressure monitoring', Journal of Colloid and Interface Science, 612, pp. 516 - 524, http://dx.doi.org/10.1016/j.jcis.2022.01.007

He M; Long J; Li M; Zheng R; Hu A; Du D; Yan Y; Ran Z; Ren L; Li R; Zhao C; Wen X; Xu H; Shu C, 2022, 'Synergy of cobalt vacancies and iron doping in cobalt selenide to promote oxygen electrode reactions in lithium-oxygen batteries', Journal of Colloid and Interface Science, 612, pp. 171 - 180, http://dx.doi.org/10.1016/j.jcis.2021.12.148

Lei H; Han H; Wang G; Mukherjee S; Bian H; Liu J; Zhao C; Fang Y, 2022, 'Self-Assembly of Amphiphilic BODIPY Derivatives on Micropatterned Ionic Liquid Surfaces for Fluorescent Films with Excellent Stability and Sensing Performance', ACS Applied Materials and Interfaces, 14, pp. 13962 - 13969, http://dx.doi.org/10.1021/acsami.2c01417

Qu J; Yang W; Wu T; Ren W; Huang J; Yu H; Zhao C; Griffith MJ; Zheng R; Ringer SP; Cairney JM, 2022, 'Atom probe specimen preparation methods for nanoparticles', Ultramicroscopy, 233, http://dx.doi.org/10.1016/j.ultramic.2021.113420

Yan Y; Ran Z; Zeng T; Wen X; Xu HY; Li R; Zhao C; Shu C, 2022, 'Interfacial Electron Redistribution of Hydrangea-like NiO@Ni2P Heterogeneous Microspheres with Dual-Phase Synergy for High-Performance Lithium–Oxygen Battery', Small, 18, http://dx.doi.org/10.1002/smll.202106707

Liu JN; Zhao CX; Ren D; Wang J; Zhang R; Wang SH; Zhao C; Li BQ; Zhang Q, 2022, 'Preconstructing Asymmetric Interface in Air Cathodes for High-Performance Rechargeable Zn–Air Batteries', Advanced Materials, 34, http://dx.doi.org/10.1002/adma.202109407

Liu S; Meyer Q; Li Y; Zhao T; Su Z; Ching K; Zhao C, 2022, 'Fe-N-C/Fe nanoparticle composite catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells', Chemical Communications, 58, pp. 2323 - 2326, http://dx.doi.org/10.1039/d1cc07042h

Zhao C; Shu C; Zheng R; Du D; Ren L; He M; Li R; Xu H; Wen X; Long J, 2022, 'Adjusting the d-band center of metallic sites in NiFe-based Bimetal-organic frameworks via tensile strain to achieve High-performance oxygen electrode catalysts for Lithium-oxygen batteries', Journal of Colloid and Interface Science, 607, pp. 1215 - 1225, http://dx.doi.org/10.1016/j.jcis.2021.09.077

Wang Y; Yan L; Dastafkan K; Zhao C; Zhao X; Xue Y; Huo J; Li S; Zhai Q, 2022, 'Correction to: Lattice Matching Growth of Conductive Hierarchical Porous MOF/LDH Heteronanotube Arrays for Highly Efficient Water Oxidation (Advanced Materials, (2021), 33, 8, (2006351), 10.1002/adma.202006351)', Advanced Materials, 34, http://dx.doi.org/10.1002/adma.202109927

Jia C; Dastafkan K; Zhao C, 2022, 'Key factors for designing single-atom metal-nitrogen-carbon catalysts for electrochemical CO2 reduction', Current Opinion in Electrochemistry, 31, http://dx.doi.org/10.1016/j.coelec.2021.100854

Ahmed MI; Arachchige LJ; Su Z; Hibbert DB; Sun C; Zhao C, 2022, 'Nitrogenase-Inspired Atomically Dispersed Fe-S-C Linkages for Improved Electrochemical Reduction of Dinitrogen to Ammonia', ACS Catalysis, 12, pp. 1443 - 1451, http://dx.doi.org/10.1021/acscatal.1c05174

Dastafkan K; Wang S; Rong C; Meyer Q; Li Y; Zhang Q; Zhao C, 2022, 'Cosynergistic Molybdate Oxo-Anionic Modification of FeNi-Based Electrocatalysts for Efficient Oxygen Evolution Reaction', Advanced Functional Materials, 32, http://dx.doi.org/10.1002/adfm.202107342

Ching K; Baker A; Tanaka R; Zhao T; Su Z; Ruoff RS; Zhao C; Chen X, 2022, 'Liquid-phase water isotope separation using graphene-oxide membranes', Carbon, 186, pp. 344 - 354, http://dx.doi.org/10.1016/j.carbon.2021.10.009

Butson JD; Sharma A; Chen H; Wang Y; Lee Y; Varadhan P; Tsampas MN; Zhao C; Tricoli A; Tan HH; Jagadish C; Karuturi S, 2022, 'Surface-Structured Cocatalyst Foils Unraveling a Pathway to High-Performance Solar Water Splitting', Advanced Energy Materials, 12, http://dx.doi.org/10.1002/aenm.202102752

Zhang D; Li H; Riaz A; Sharma A; Liang W; Wang Y; Chen H; Vora K; Yan D; Su Z; Tricoli A; Zhao C; Beck FJ; Reuter K; Catchpole K; Karuturi S, 2022, 'Unconventional direct synthesis of Ni3N/Ni with N-vacancies for efficient and stable hydrogen evolution', Energy and Environmental Science, 15, pp. 185 - 195, http://dx.doi.org/10.1039/d1ee02013g

Petersen TC; Zhao C; Bøjesen ED; Broge NLN; Hata S; Liu Y; Etheridge J, 2022, 'Volume imaging by tracking sparse topological features in electron micrograph tilt series.', Ultramicroscopy, 236, pp. 113475, http://dx.doi.org/10.1016/j.ultramic.2022.113475

Wu W; Niu C; Yan P; Shi F; Ma C; Yang X; Jia Y; Chen J; Ahmed MI; Zhao C; Xu Q, 2021, 'Building of sub-monolayer MoS2-x structure to circumvent the scaling relations in N2-to-NH3 electrocatalysis', Applied Catalysis B: Environmental, 298, http://dx.doi.org/10.1016/j.apcatb.2021.120615

Du D; Zheng R; He M; Zhao C; Zhou B; Li R; Xu H; Wen X; Zeng T; Shu C, 2021, 'A-site cationic defects induced electronic structure regulation of LaMnO3 perovskite boosts oxygen electrode reactions in aprotic lithium–oxygen batteries', Energy Storage Materials, 43, pp. 293 - 304, http://dx.doi.org/10.1016/j.ensm.2021.09.011

Ren W; Tan X; Qu J; Li S; Li J; Liu X; Ringer SP; Cairney JM; Wang K; Smith SC; Zhao C, 2021, 'Isolated copper–tin atomic interfaces tuning electrocatalytic CO2 conversion', Nature Communications, 12, http://dx.doi.org/10.1038/s41467-021-21750-y

Jia C; Li S; Zhao Y; Hocking RK; Ren W; Chen X; Su Z; Yang W; Wang Y; Zheng S; Pan F; Zhao C, 2021, 'Nitrogen Vacancy Induced Coordinative Reconstruction of Single-Atom Ni Catalyst for Efficient Electrochemical CO2 Reduction', Advanced Functional Materials, 31, http://dx.doi.org/10.1002/adfm.202107072

Ren L; Zheng R; Zhou B; Xu H; Li R; Zhao C; Wen X; Zeng T; Shu C, 2021, 'Rationalizing Surface Electronic Configuration of Ni–Fe LDO by Introducing Cationic Nickel Vacancies as Highly Efficient Electrocatalysts for Lithium–Oxygen Batteries', Small, 17, http://dx.doi.org/10.1002/smll.202104349


Back to profile page