Select Publications

Journal articles

Shen Y; Dastafkan K; Sun Q; Wang L; Ma Y; Wang Z; Zhao C, 2019, 'Improved electrochemical performance of nickel-cobalt hydroxides by electrodeposition of interlayered reduced graphene oxide', International Journal of Hydrogen Energy, 44, pp. 3658 - 3667, http://dx.doi.org/10.1016/j.ijhydene.2018.12.098

Li Y; Tan X; Chen S; Bo X; Ren H; Smith SC; Zhao C, 2019, 'Processable Surface Modification of Nickel-Heteroatom (N, S) Bridge Sites for Promoted Alkaline Hydrogen Evolution', Angewandte Chemie - International Edition, 58, pp. 461 - 466, http://dx.doi.org/10.1002/anie.201808629

Li Y; Tan X; Chen S; Bo X; Ren H; Smith SC; Zhao C, 2019, 'Processable Surface Modification of Nickel‐Heteroatom (N, S) Bridge Sites for Promoted Alkaline Hydrogen Evolution', Angewandte Chemie, 131, pp. 471 - 476, http://dx.doi.org/10.1002/ange.201808629

Zhong Y; Chu B; Bo X; He Y; Zhao C, 2019, 'Aqueous synthesis of three-dimensional fluorescent silicon-based nanoscale networks featuring unusual anti-photobleaching properties', Chemical Communications, 55, pp. 652 - 655, http://dx.doi.org/10.1039/C8CC07903J

Adamson W; Bo X; Li Y; Suryanto BHR; Chen X; Zhao C, 2019, 'Co-Fe binary metal oxide electrocatalyst with synergistic interface structures for efficient overall water splitting', Catalysis Today, 351, pp. 44 - 49, http://dx.doi.org/10.1016/j.cattod.2019.01.060

Dastafkan K; Li Y; Zeng Y; Han L; Zhao C, 2019, 'Enhanced surface wettability and innate activity of an iron borate catalyst for efficient oxygen evolution and gas bubble detachment', Journal of Materials Chemistry A, 7, pp. 15252 - 15261, http://dx.doi.org/10.1039/c9ta03346g

Ge M; Hussain G; Hibbert DB; Silvester DS; Zhao C, 2019, 'Ionic Liquid-based Microchannels for Highly Sensitive and Fast Amperometric Detection of Toxic Gases', Electroanalysis, 31, pp. 66 - 74, http://dx.doi.org/10.1002/elan.201800409

Wu D; Cao M; You H; Zhao C; Cao R, 2019, 'N-Doped holey carbon materials derived from a metal-free macrocycle cucurbit[6]uril assembly as an efficient electrocatalyst for the oxygen reduction reaction', Chemical Communications, 55, pp. 13832 - 13835, http://dx.doi.org/10.1039/c9cc06939a

Yang W; Chen S; Ren W; Zhao Y; Chen X; Jia C; Liu J; Zhao C, 2019, 'Nanostructured amalgams with tuneable silver-mercury bonding sites for selective electroreduction of carbon dioxide into formate and carbon monoxide', Journal of Materials Chemistry A, 7, pp. 15907 - 15912, http://dx.doi.org/10.1039/c9ta03611c

Zang W; Toster J; Das B; Gondosiswanto R; Liu S; Eggers PK; Zhao C; Raston CL; Chen X, 2019, 'P -Phosphonic acid calix[8]arene mediated synthesis of ultra-large, ultra-thin, single-crystal gold nanoplatelets', Chemical Communications, 55, pp. 3785 - 3788, http://dx.doi.org/10.1039/c8cc10145k

Liu G; Zhao Y; Yao R; Li N; Wang M; Ren H; Li J; Zhao C, 2019, 'Realizing high performance solar water oxidation for Ti-doped hematite nanoarrays by synergistic decoration with ultrathin cobalt-iron phosphate nanolayers', Chemical Engineering Journal, 355, pp. 49 - 57, http://dx.doi.org/10.1016/j.cej.2018.08.100

Ahmed MI; Chen S; Ren W; Chen X; Zhao C, 2019, 'Synergistic bimetallic CoFe2O4 clusters supported on graphene for ambient electrocatalytic reduction of nitrogen to ammonia', Chemical Communications, 55, pp. 12184 - 12187, http://dx.doi.org/10.1039/c9cc05684j

Duan J; Jiang L; Guo X; Chen S; Wang G; Zhao C, 2018, 'Mxene-Directed Dual Amphiphilicity at Liquid, Solid, and Gas Interfaces', Chemistry - An Asian Journal, 13, pp. 3850 - 3854, http://dx.doi.org/10.1002/asia.201801405

Sabri M; King HJ; Gummow RJ; Lu X; Zhao C; Oelgemöller M; Chang SLY; Hocking RK, 2018, 'Oxidant or Catalyst for Oxidation? A Study of How Structure and Disorder Change the Selectivity for Direct versus Catalytic Oxidation Mediated by Manganese(III,IV) Oxides', Chemistry of Materials, 30, pp. 8244 - 8256, http://dx.doi.org/10.1021/acs.chemmater.8b03661

Duan J; Chen S; Li Y; Zhao C, 2018, 'Closely Arranged 3D-0D Graphene-Nickel Sulfide Superstructures for Bifunctional Hydrogen Electrocatalysis', ACS Applied Energy Materials, 1, pp. 6368 - 6373, http://dx.doi.org/10.1021/acsaem.8b01348

He S; He S; Bo X; Wang Q; Zhan F; Wang Q; Zhao C, 2018, 'Porous Ni2P/C microrods derived from microwave-prepared MOF-74-Ni and its electrocatalysis for hydrogen evolution reaction', Materials Letters, 231, pp. 94 - 97, http://dx.doi.org/10.1016/j.matlet.2018.08.033

He S; He S; Gao F; Bo X; Wang Q; Chen X; Duan J; Zhao C, 2018, 'Ni 2 P@carbon core-shell nanorod array derived from ZIF-67-Ni: Effect of phosphorization temperature on morphology, structure and hydrogen evolution reaction performance', Applied Surface Science, 457, pp. 933 - 941, http://dx.doi.org/10.1016/j.apsusc.2018.07.033

Bo X; Li Y; Chen X; Zhao C, 2018, 'High valence chromium regulated cobalt-iron-hydroxide for enhanced water oxidation', Journal of Power Sources, 402, pp. 381 - 387, http://dx.doi.org/10.1016/j.jpowsour.2018.09.063

Sun Q; Wang L; Shen Y; Zhou M; Ma Y; Wang Z; Zhao C, 2018, 'Bifunctional Copper-Doped Nickel Catalysts Enable Energy-Efficient Hydrogen Production via Hydrazine Oxidation and Hydrogen Evolution Reduction', ACS Sustainable Chemistry and Engineering, 6, pp. 12746 - 12754, http://dx.doi.org/10.1021/acssuschemeng.8b01887

Duan J; Chen S; Zhao C, 2018, 'Strained Nickel Phosphide Nanosheet Array', ACS Applied Materials and Interfaces, 10, pp. 30029 - 30034, http://dx.doi.org/10.1021/acsami.8b09147

Guo Y; Guo D; Ye F; Wang K; Shi Z; Chen X; Zhao C, 2018, 'Self-Supported NiSe2 Nanowire Arrays on Carbon Fiber Paper as Efficient and Stable Electrode for Hydrogen Evolution Reaction', ACS Sustainable Chemistry and Engineering, 6, pp. 11884 - 11891, http://dx.doi.org/10.1021/acssuschemeng.8b02164

Yang W; Dastafkan K; Jia C; Zhao C, 2018, 'Design of Electrocatalysts and Electrochemical Cells for Carbon Dioxide Reduction Reactions', Advanced Materials Technologies, 3, http://dx.doi.org/10.1002/admt.201700377

Ren W; Chen X; Zhao C, 2018, 'Ultrafast Aqueous Potassium-Ion Batteries Cathode for Stable Intermittent Grid-Scale Energy Storage', Advanced Energy Materials, 8, http://dx.doi.org/10.1002/aenm.201801413

Wang Q; Wang Q; Xu B; Gao F; Gao F; Zhao C, 2018, 'Flower-shaped multiwalled carbon nanotubes@nickel-trimesic acid MOF composite as a high-performance cathode material for energy storage', Electrochimica Acta, 281, pp. 69 - 77, http://dx.doi.org/10.1016/j.electacta.2018.05.159

Gloag L; Benedetti TM; Cheong S; Li Y; Chan XH; Lacroix LM; Chang SLY; Arenal R; Florea I; Barron H; Barnard AS; Henning AM; Zhao C; Schuhmann W; Gooding JJ; Tilley RD, 2018, 'Three-Dimensional Branched and Faceted Gold–Ruthenium Nanoparticles: Using Nanostructure to Improve Stability in Oxygen Evolution Electrocatalysis', Angewandte Chemie - International Edition, 57, pp. 10241 - 10245, http://dx.doi.org/10.1002/anie.201806300

Gloag L; Benedetti TM; Cheong S; Li Y; Chan X; Lacroix L; Chang SLY; Arenal R; Florea I; Barron H; Barnard AS; Henning AM; Zhao C; Schuhmann W; Gooding JJ; Tilley RD, 2018, 'Three‐Dimensional Branched and Faceted Gold–Ruthenium Nanoparticles: Using Nanostructure to Improve Stability in Oxygen Evolution Electrocatalysis', Angewandte Chemie, 130, pp. 10398 - 10402, http://dx.doi.org/10.1002/ange.201806300

Wang Q; Dastafkan K; Zhao C, 2018, 'Design strategies for non-precious metal oxide electrocatalysts for oxygen evolution reactions', Current Opinion in Electrochemistry, 10, pp. 16 - 23, http://dx.doi.org/10.1016/j.coelec.2018.03.015

Asnavandi M; Yin Y; Li Y; Sun C; Zhao C, 2018, 'Promoting Oxygen Evolution Reactions through Introduction of Oxygen Vacancies to Benchmark NiFe-OOH Catalysts', ACS Energy Letters, 3, pp. 1515 - 1520, http://dx.doi.org/10.1021/acsenergylett.8b00696

Wang Q; Zhan F; Wang Q; Li Y; Bo X; Gao F; Zhao C, 2018, 'Low-Temperature Synthesis of Cuboid Silver Tetrathiotungstate (Ag2WS4) as Electrocatalyst for Hydrogen Evolution Reaction', Inorganic Chemistry, 57, pp. 5791 - 5800, http://dx.doi.org/10.1021/acs.inorgchem.8b00108

Zhang X; Jiang X; Yang Q; Wang X; Zhang Y; Zhao J; Qu K; Zhao C, 2018, 'Online Monitoring of Bacterial Growth with an Electrical Sensor', Analytical Chemistry, 90, pp. 6006 - 6011, http://dx.doi.org/10.1021/acs.analchem.8b01214

Sun Q; Dong Y; Wang Z; Yin S; Zhao C, 2018, 'Synergistic Nanotubular Copper-Doped Nickel Catalysts for Hydrogen Evolution Reactions', Small, 14, http://dx.doi.org/10.1002/smll.201704137

Gondosiswanto R; Hibbert DB; Fang Y; Zhao C, 2018, 'Redox Recycling Amplification Using an Interdigitated Microelectrode Array for Ionic Liquid-Based Oxygen Sensors', Analytical Chemistry, 90, pp. 3950 - 3957, http://dx.doi.org/10.1021/acs.analchem.7b04945

Asnavandi M; Suryanto BHR; Yang W; Bo X; Zhao C, 2018, 'Dynamic Hydrogen Bubble Templated NiCu Phosphide Electrodes for pH-Insensitive Hydrogen Evolution Reactions', ACS Sustainable Chemistry and Engineering, 6, pp. 2866 - 2871, http://dx.doi.org/10.1021/acssuschemeng.7b02492

Liu G; Yao R; Zhao Y; Wang M; Li N; Li Y; Bo X; Li J; Zhao C, 2018, 'Encapsulation of Ni/Fe3O4 heterostructures inside onion-like N-doped carbon nanorods enables synergistic electrocatalysis for water oxidation', Nanoscale, 10, pp. 3997 - 4003, http://dx.doi.org/10.1039/c7nr09446a

Xiao X; Huang D; Fu Y; Wen M; Jiang X; Lv X; Li M; Gao L; Liu S; Wang M; Zhao C; Shen Y, 2018, 'Engineering NiS/Ni2P Heterostructures for Efficient Electrocatalytic Water Splitting', ACS Applied Materials and Interfaces, 10, pp. 4689 - 4696, http://dx.doi.org/10.1021/acsami.7b16430

Su X; Sun Q; Bai J; Wang Z; Zhao C, 2018, 'Electrodeposition of porous MoO42--doped NiFe nanosheets for highly efficient electrocatalytic oxygen evolution reactions', Electrochimica Acta, 260, pp. 477 - 482, http://dx.doi.org/10.1016/j.electacta.2017.12.110

Bai J; Sun Q; Zhou M; Wang L; Shen Y; Ma Y; Wang Z; Zhao C, 2018, 'Copper (0) doping makes cobalt-nickel hydroxide a high-efficiency catalyst for hydrogen evolution reaction', Journal of the Electrochemical Society, 165, pp. H866 - H871, http://dx.doi.org/10.1149/2.0881813jes

Alzahrani H; Bentley C; Bohn PW; Chikere C; Commandeur D; Crooks RM; Ehi-Eromosele C; Ewing A; Galeyeva A; Hersbach T; Hillman R; Kanoufi F; Koper M; Kranz C; Löffler T; Long Y; Macpherson J; McKelvey K; Minteer S; Mirkin M; Nichols R; Nogala W; Öhl D; Pelta J; Ren H; Rudd J; Schuhmann W; Tian Z; Unwin P; Vezzoli A; Willets K; Wu Y; Yang Z; Zhan D; Zhao C, 2018, 'Energy conversion at nanointerfaces: General discussion', Faraday Discussions, 210, pp. 333 - 351, http://dx.doi.org/10.1039/c8fd90025f

Suryanto BHR; Fang T; Cheong S; Tilley RD; Zhao C, 2018, 'From the inside-out: Leached metal impurities in multiwall carbon nanotubes for purification or electrocatalysis', Journal of Materials Chemistry A, 6, pp. 4686 - 4694, http://dx.doi.org/10.1039/c7ta11257b

Yang W; Ma W; Zhang Z; Zhao C, 2018, 'Ligament size-dependent electrocatalytic activity of nanoporous Ag network for CO2 reduction', Faraday Discussions, 210, pp. 289 - 299, http://dx.doi.org/10.1039/c8fd00056e

Wang S; Zhao C; Liu P; Wang Z; Ding J; Zhou W, 2018, 'Facile construction of dual-targeting delivery system by using lipid capped polymer nanoparticles for anti-glioma therapy', RSC Advances, 8, pp. 444 - 453, http://dx.doi.org/10.1039/c7ra12376k

Zou C; Cong C; Shang J; Zhao C; Eginligil M; Wu L; Chen Y; Zhang H; Feng S; Zhang J; Zeng H; Huang W; Yu T, 2018, 'Probing magnetic-proximity-effect enlarged valley splitting in monolayer WSe2 by photoluminescence', Nano Research, 11, pp. 6252 - 6259, http://dx.doi.org/10.1007/s12274-018-2148-z

Meng J; Liu X; Li J; Li Q; Zhao C; Xu L; Wang X; Liu F; Yang W; Xu X; Liu Z; Niu C; Mai L, 2017, 'General Oriented Synthesis of Precise Carbon-Confined Nanostructures by Low-Pressure Vapor Superassembly and Controlled Pyrolysis', Nano Letters, 17, pp. 7773 - 7781, http://dx.doi.org/10.1021/acs.nanolett.7b03982

Gondosiswanto R; Hibbert DB; Fang Y; Zhao C, 2017, 'Ionic Liquid Microstrips Impregnated with Magnetic Nanostirrers for Sensitive Gas Sensors', ACS Applied Materials and Interfaces, 9, pp. 43377 - 43385, http://dx.doi.org/10.1021/acsami.7b14657

Asnavandi M; Zhao C, 2017, 'Autologous growth of nickel oxyhydroxides with: In situ electrochemical iron doping for efficient oxygen evolution reactions', Materials Chemistry Frontiers, 1, pp. 2541 - 2546, http://dx.doi.org/10.1039/c7qm00367f

Bo X; Li Y; Hocking RK; Zhao C, 2017, 'NiFeCr Hydroxide Holey Nanosheet as Advanced Electrocatalyst for Water Oxidation', ACS Applied Materials and Interfaces, 9, pp. 41239 - 41245, http://dx.doi.org/10.1021/acsami.7b12629

Tao L; Li Y; Li M; Gao G; Xiao X; Wang M; Jiang X; Lv X; Li Q; Zhang S; Zhao Z; Zhao C; Shen Y, 2017, 'Nanostructured Nickel Cobaltite Antispinel as Bifunctional Electrocatalyst for Overall Water Splitting', Journal of Physical Chemistry C, 121, pp. 25888 - 25897, http://dx.doi.org/10.1021/acs.jpcc.7b08814

Lei Z; Bai J; Li Y; Wang Z; Zhao C, 2017, 'Fabrication of Nanoporous Nickel-Iron Hydroxylphosphate Composite as Bifunctional and Reversible Catalyst for Highly Efficient Intermittent Water Splitting', ACS Applied Materials and Interfaces, 9, pp. 35837 - 35846, http://dx.doi.org/10.1021/acsami.7b10385

Li Y; Zhao C, 2017, 'Two-dimensional NiTe nanosheets anchored on three-dimensional nickel foam as high-performance catalyst for electrochemical water oxidation', Advanced Materials Letters, 8, pp. 916 - 921, http://dx.doi.org/10.5185/amlett.2017.1669

Choudhury MH; Ciampi S; Lu X; Kashi MB; Zhao C; Gooding JJ; Bolourian Kashi M, 2017, 'Spatially confined electrochemical activity at a non-patterned semiconductor electrode', Electrochimica Acta, 242, pp. 240 - 246, http://dx.doi.org/10.1016/j.electacta.2017.04.177


Back to profile page