Select Publications

Book Chapters

Dastafkan K; Zhao C, 2022, '2 D ‐Materials‐Free Heterostructures for EC Energy Conversion', in , Wiley, pp. 3 - 51, http://dx.doi.org/10.1002/9783527831401.ch2

Sun Q; Jia C; Zhao C, 2022, 'Ionic Liquids for Electrochemical CO2 Reduction', in Encyclopedia of Ionic Liquids, Springer Nature Singapore, pp. 1 - 22, http://dx.doi.org/10.1007/978-981-10-6739-6_148-1

Sun Q; Jia C; Zhao C, 2022, 'Ionic Liquids for Electrochemical CO2 Reduction', in Encyclopedia of Ionic Liquids, Springer Nature Singapore, pp. 676 - 696, http://dx.doi.org/10.1007/978-981-33-4221-7_148

Liu G; Dastafkan K; Zhao C, 2021, 'Electrochemical Water Splitting', in Heterogeneous Catalysts: Advanced Design, Characterization and Applications: Volume 1 and 2, Wiley, pp. 533 - 555, http://dx.doi.org/10.1002/9783527813599.ch30

Zhao C; Gondosiswanto R; Hibbert DB, 2018, 'Smart Ionic Liquids-based Gas Sensors', in Ionic Liquid Devices, edn. 28, Royal Society of Chemistry, pp. 337 - 364, http://dx.doi.org/10.1039/9781788011839-00337

Zhao C; Gunawan C; Ge M; Gondosiswanto R; Aldous L, 2016, 'Recent advances in ionic liquid-based gas sensors', in Koel M (ed.), Analytical Applications of Ionic Liquids, World Scientific Publishing Europe Limited, pp. 261 - 286, http://dx.doi.org/10.1142/9781786340726_0010

Zhao C; Gunawan C; Ge M; Gondosiswanto R; Aldous L, 2016, 'Recent advances in ionic liquid-based gas sensors', in Analytical Applications of Ionic Liquids, World Scientific Publishing, pp. 287 - 338, http://dx.doi.org/10.1142/9781786340726_0010

Aldous L; Khan A; Hossain MM; Zhao C, 2014, 'Electrocatalysis in Ionic Liquids', in Hardacre C; Parvulescu V (ed.), Catalysis in Ionic Liquirds, edn. 15, Royal Society of Chemistry, pp. 433 - 473, http://dx.doi.org/10.1039/9781849737210-00433

Journal articles

Wang YD; Meyer Q; Tang K; McClure JE; White RT; Kelly ST; Crawford MM; Iacoviello F; Brett DJL; Shearing PR; Mostaghimi P; Zhao C; Armstrong RT, 2023, 'Large-scale physically accurate modelling of real proton exchange membrane fuel cell with deep learning', Nature Communications, 14, pp. 745, http://dx.doi.org/10.1038/s41467-023-35973-8

Dastafkan K; Shen X; Hocking RK; Meyer Q; Zhao C, 2023, 'Monometallic interphasic synergy via nano-hetero-interfacing for hydrogen evolution in alkaline electrolytes', Nature Communications, 14, pp. 547, http://dx.doi.org/10.1038/s41467-023-36100-3

Meyer Q; Yang C; Cheng Y; Zhao C, 2023, 'Overcoming the Electrode Challenges of High-Temperature Proton Exchange Membrane Fuel Cells', Electrochemical Energy Reviews, 6, http://dx.doi.org/10.1007/s41918-023-00180-y

Su Z; Guo H; Zhao C, 2023, 'Rational Design of Electrode–Electrolyte Interphase and Electrolytes for Rechargeable Proton Batteries', Nano-Micro Letters, 15, http://dx.doi.org/10.1007/s40820-023-01071-z

Fan Y; Li R; Zhao C; Hu A; Zhou B; Pan Y; Chen J; Yan Z; Liu M; He M; Liu J; Chen N; Long J, 2023, 'Chromium-doped inverse spinel electrocatalysts with optimal orbital occupancy for facilitating reaction kinetics of lithium-oxygen batteries', Journal of Colloid and Interface Science, 645, pp. 439 - 447, http://dx.doi.org/10.1016/j.jcis.2023.04.128

Jia C; Sun Q; Zhao C, 2023, 'From bulk metals to single-atoms: design of efficient catalysts for the electroreduction of CO2.', Chem Commun (Camb), http://dx.doi.org/10.1039/d3cc01581e

Sun Q; Zhao Y; Tan X; Jia C; Su Z; Meyer Q; Ahmed MI; Zhao C, 2023, 'Atomically Dispersed Cu-Au Alloy for Efficient Electrocatalytic Reduction of Carbon Monoxide to Acetate', ACS Catalysis, 13, pp. 5689 - 5696, http://dx.doi.org/10.1021/acscatal.2c06145

Xia Y; Cheng Y; Wang R; Meng Z; Meyer Q; Zhao C; Zhang H; Luo R; Li Y; Tang H, 2023, 'Porous nanosheet composite with multi-type active centers as an efficient and stable oxygen electrocatalyst in alkaline and acid conditions', Science China Materials, 66, pp. 1407 - 1416, http://dx.doi.org/10.1007/s40843-022-2272-2

Müller-Hülstede J; Uhlig LM; Schmies H; Schonvogel D; Meyer Q; Nie Y; Zhao C; Vidakovic J; Wagner P, 2023, 'Towards the Reduction of Pt Loading in High Temperature Proton Exchange Membrane Fuel Cells – Effect of Fe−N−C in Pt-Alloy Cathodes', ChemSusChem, 16, http://dx.doi.org/10.1002/cssc.202202046

Wang S; Liu X; Chen X; Dastafkan K; Fu ZH; Tan X; Zhang Q; Zhao C, 2023, 'Super-exchange effect induced by early 3d metal doping on NiFe2O4(0 0 1) surface for oxygen evolution reaction', Journal of Energy Chemistry, 78, pp. 21 - 29, http://dx.doi.org/10.1016/j.jechem.2022.11.025

Chen Y; Zeng X; Meyer Q; Zhao C; He Z; Wu F; Tang H; Cheng Y, 2023, 'An outstanding NiFe/NF oxygen evolution reaction boosted by the hydroxyl oxides', Electrochimica Acta, 442, http://dx.doi.org/10.1016/j.electacta.2023.141862

Meyer Q; Liu S; Ching K; Da Wang Y; Zhao C, 2023, 'Operando monitoring of the evolution of triple-phase boundaries in proton exchange membrane fuel cells', Journal of Power Sources, 557, pp. 232539 - 232539, http://dx.doi.org/10.1016/j.jpowsour.2022.232539

Quattrocchi E; Py B; Maradesa A; Meyer Q; Zhao C; Ciucci F, 2023, 'Deconvolution of electrochemical impedance spectroscopy data using the deep-neural-network-enhanced distribution of relaxation times', Electrochimica Acta, 439, pp. 141499 - 141499, http://dx.doi.org/10.1016/j.electacta.2022.141499

Su Z; Tang J; Chen J; Guo H; Wu S; Yin S; Zhao T; Jia C; Meyer Q; Rawal A; Ho J; Fang Y; Zhao C, 2023, 'Co-insertion of Water with Protons into Organic Electrodes Enables High-Rate and High-Capacity Proton Batteries', SMALL STRUCTURES, http://dx.doi.org/10.1002/sstr.202200257

Tang J; Liang Z; Qin H; Liu X; Zhai B; Su Z; Liu Q; Lei H; Liu K; Zhao C; Cao R; Fang Y, 2023, 'Large-area Free-standing Metalloporphyrin-based Covalent Organic Framework Films by Liquid-air Interfacial Polymerization for Oxygen Electrocatalysis', Angewandte Chemie - International Edition, 62, http://dx.doi.org/10.1002/anie.202214449

Tang J; Liang Z; Qin H; Liu X; Zhai B; Su Z; Liu Q; Lei H; Liu K; Zhao C; Cao R; Fang Y, 2023, 'Large‐area Free‐standing Metalloporphyrin‐based Covalent Organic Framework Films by Liquid‐air Interfacial Polymerization for Oxygen Electrocatalysis', Angewandte Chemie, 135, http://dx.doi.org/10.1002/ange.202214449

Zhao T; Wang S; Jia C; Rong C; Su Z; Dastafkan K; Zhang Q; Zhao C, 2023, 'Cooperative Boron and Vanadium Doping of Nickel Phosphides for Hydrogen Evolution in Alkaline and Anion Exchange Membrane Water/Seawater Electrolyzers', Small, http://dx.doi.org/10.1002/smll.202208076

Fan M; Tao Z; Zhao Q; Li J; Liu G; Zhao C, 2023, 'Molecular Copper Phthalocyanine and FeOOH Modified BiVO4 Photoanodes for Enhanced Photoelectrochemical Water Oxidation', Advanced Materials Technologies, pp. 2201835 - 2201835, http://dx.doi.org/10.1002/admt.202201835

Zhao X; Gao T; Ren W; Zhao C; Liu ZH; Li L, 2022, 'Highly active CoP-Co2N confined in nanocarbon enabling efficient electrocatalytic immobilizing-conversion of polysulfide targeting high-rate lithium-sulfur batteries', Journal of Energy Chemistry, 75, pp. 250 - 259, http://dx.doi.org/10.1016/j.jechem.2022.08.033

Wu S; Chen J; Su Z; Guo H; Zhao T; Jia C; Stansby J; Tang J; Rawal A; Fang Y; Ho J; Zhao C, 2022, 'Molecular Crowding Electrolytes for Stable Proton Batteries', Small, 18, http://dx.doi.org/10.1002/smll.202202992

Guo H; Wan L; Tang J; Wu S; Su Z; Sharma N; Fang Y; Liu Z; Zhao C, 2022, 'Stable colloid-in-acid electrolytes for long life proton batteries', Nano Energy, 102, pp. 107642 - 107642, http://dx.doi.org/10.1016/j.nanoen.2022.107642

Zhao C; Sharma N, 2022, 'Editorial overview: Electrochemical materials and engineering 2022 Energy materials and concepts that enable a green and clean future', Current Opinion in Electrochemistry, 35, http://dx.doi.org/10.1016/j.coelec.2022.101076

Zhao T; Wang S; Li Y; Jia C; Su Z; Hao D; Ni BJ; Zhang Q; Zhao C, 2022, 'Heterostructured V-Doped Ni2P/Ni12P5 Electrocatalysts for Hydrogen Evolution in Anion Exchange Membrane Water Electrolyzers', Small, 18, pp. e2204758, http://dx.doi.org/10.1002/smll.202204758

Jia C; Shi Z; Zhao C, 2022, 'The porosity engineering for single-atom metal-nitrogen-carbon catalysts for the electroreduction of CO2', Current Opinion in Green and Sustainable Chemistry, 37, pp. 100651 - 100651, http://dx.doi.org/10.1016/j.cogsc.2022.100651

Li M; Yang K; Abdinejad M; Zhao C; Burdyny T, 2022, 'Advancing integrated CO2 electrochemical conversion with amine-based CO2 capture: a review', Nanoscale, 14, pp. 11892 - 11908, http://dx.doi.org/10.1039/d2nr03310k

Bo X; Zan L; Jia R; Dastafkan K; Zhao C, 2022, 'The nature of synergistic effects in transition metal oxides/in-situ intermediate-hydroxides for enhanced oxygen evolution reaction', Current Opinion in Electrochemistry, 34, pp. 100987 - 100987, http://dx.doi.org/10.1016/j.coelec.2022.100987

Müller-Hülstede J; Zierdt T; Schmies H; Schonvogel D; Meyer Q; Zhao C; Wagner P; Wark M, 2022, 'Implementation of different Fe–N–C catalysts in high temperature proton exchange membrane fuel cells – Effect of catalyst and catalyst layer on performance', Journal of Power Sources, 537, http://dx.doi.org/10.1016/j.jpowsour.2022.231529

Xiao Y; Dastafkan K; Li Y; Zhao T; Su Z; Qi H; Zhao C, 2022, 'Oxygen Corrosion Engineering of Nonprecious Ternary Metal Hydroxides toward Oxygen Evolution Reaction', ACS Sustainable Chemistry and Engineering, 10, pp. 8597 - 8604, http://dx.doi.org/10.1021/acssuschemeng.2c02114

Sun Q; Jia C; Zhao Y; Zhao C, 2022, 'Single atom-based catalysts for electrochemical CO2 reduction', Chinese Journal of Catalysis, 43, pp. 1547 - 1597, http://dx.doi.org/10.1016/S1872-2067(21)64000-7

Ren W; Tan X; Jia C; Krammer A; Sun Q; Qu J; Smith SC; Schueler A; Hu X; Zhao C, 2022, 'Electronic Regulation of Nickel Single Atoms by Confined Nickel Nanoparticles for Energy-Efficient CO2 Electroreduction', Angewandte Chemie - International Edition, 61, http://dx.doi.org/10.1002/anie.202203335

Ren W; Tan X; Jia C; Krammer A; Sun Q; Qu J; Smith SC; Schueler A; Hu X; Zhao C, 2022, 'Electronic Regulation of Nickel Single Atoms by Confined Nickel Nanoparticles for Energy‐Efficient CO 2 Electroreduction', Angewandte Chemie, 134, http://dx.doi.org/10.1002/ange.202203335

Meyer Q; Liu S; Li Y; Zhao C, 2022, 'Operando detection of oxygen reduction reaction kinetics of Fe–N–C catalysts in proton exchange membrane fuel cells', Journal of Power Sources, 533, http://dx.doi.org/10.1016/j.jpowsour.2022.231058

Su Z; Chen J; Stansby J; Jia C; Zhao T; Tang J; Fang Y; Rawal A; Ho J; Zhao C, 2022, 'Hydrogen-Bond Disrupting Electrolytes for Fast and Stable Proton Batteries', Small, 18, http://dx.doi.org/10.1002/smll.202201449

Zhao H; Yang S; Yang W; Zhao C; Cao M; Cao R, 2022, 'Ultrasmall Mo2C Embedded in N-Doped Holey Carbon for High-Efficiency Electrochemical Oxygen Reduction Reaction', ChemElectroChem, 9, http://dx.doi.org/10.1002/celc.202200141

Tang K; Meyer Q; White R; Armstrong RT; Mostaghimi P; Da Wang Y; Liu S; Zhao C; Regenauer-Lieb K; Tung PKM, 2022, 'Deep learning for full-feature X-ray microcomputed tomography segmentation of proton electron membrane fuel cells', Computers and Chemical Engineering, 161, pp. 107768 - 107768, http://dx.doi.org/10.1016/j.compchemeng.2022.107768

Rong C; Shen X; Wang Y; Thomsen L; Zhao T; Li Y; Lu X; Amal R; Zhao C, 2022, 'Electronic Structure Engineering of Single-Atom Ru Sites via Co–N4 Sites for Bifunctional pH-Universal Water Splitting', Advanced Materials, 34, pp. e2110103, http://dx.doi.org/10.1002/adma.202110103

Sun Q; Zhao Y; Ren W; Zhao C, 2022, 'Electroreduction of low concentration CO2 at atomically dispersed Ni-N-C catalysts with nanoconfined ionic liquids', Applied Catalysis B: Environmental, 304, http://dx.doi.org/10.1016/j.apcatb.2021.120963

Zhang Y; Chen X; Cen W; Ren W; Guo H; Wu S; Xiao Y; Chen S; Guo Y; Xiao D; Zhao C, 2022, 'Flash-assisted doping graphene for ultrafast potassium transport', Nano Research, 15, pp. 4083 - 4090, http://dx.doi.org/10.1007/s12274-021-4023-6

Chen C; He S; Dastafkan K; Zou Z; Wang Q; Zhao C, 2022, 'Sea urchin-like NiMoO4 nanorod arrays as highly efficient bifunctional catalysts for electrocatalytic/photovoltage-driven urea electrolysis', Chinese Journal of Catalysis, 43, pp. 1267 - 1276, http://dx.doi.org/10.1016/S1872-2067(21)63962-1

Tang J; Zhai B; Liu X; Liu J; Zhao C; Fang Y, 2022, 'Interfacially confined preparation of copper Porphyrin-contained nanofilms towards High-performance Strain-Pressure monitoring', Journal of Colloid and Interface Science, 612, pp. 516 - 524, http://dx.doi.org/10.1016/j.jcis.2022.01.007

Lei H; Han H; Wang G; Mukherjee S; Bian H; Liu J; Zhao C; Fang Y, 2022, 'Self-Assembly of Amphiphilic BODIPY Derivatives on Micropatterned Ionic Liquid Surfaces for Fluorescent Films with Excellent Stability and Sensing Performance', ACS Applied Materials and Interfaces, 14, pp. 13962 - 13969, http://dx.doi.org/10.1021/acsami.2c01417

Qu J; Yang W; Wu T; Ren W; Huang J; Yu H; Zhao C; Griffith MJ; Zheng R; Ringer SP; Cairney JM, 2022, 'Atom probe specimen preparation methods for nanoparticles', Ultramicroscopy, 233, http://dx.doi.org/10.1016/j.ultramic.2021.113420


Back to profile page