ORCID as entered in ROS

Select Publications
2024, 'Electrocatalytic Reduction of CO
2022, '2
2022, 'Ionic Liquids for Electrochemical CO2 Reduction', in Encyclopedia of Ionic Liquids, Springer Nature Singapore, pp. 1 - 22, http://dx.doi.org/10.1007/978-981-10-6739-6_148-1
,2022, 'Ionic Liquids for Electrochemical CO2 Reduction', in Encyclopedia of Ionic Liquids, Springer Nature Singapore, pp. 676 - 696, http://dx.doi.org/10.1007/978-981-33-4221-7_148
,2021, '2D-Materials-Free Heterostructures for EC Energy Conversion', in Atomic and Nano Scale Materials for Advanced Energy Conversion: Volume 1, pp. 5 - 51, http://dx.doi.org/10.1002/9783527831401.ch2
,2021, 'Electrochemical Water Splitting', in Heterogeneous Catalysts: Advanced Design, Characterization and Applications: Volume 1 and 2, pp. 533 - 555, http://dx.doi.org/10.1002/9783527813599.ch30
,2018, 'Smart Ionic Liquids-based Gas Sensors', in Ionic Liquid Devices, Royal Society of Chemistry, pp. 337 - 364, http://dx.doi.org/10.1039/9781788011839-00337
,2017, 'Education Intelligence Should Be the Breakthrough in Intelligence Science', in Uden L; Lu W; Ting IH (ed.), , SPRINGER-VERLAG BERLIN, pp. 424 - 434, http://dx.doi.org/10.1007/978-3-319-62698-7_35
,2016, 'Recent advances in ionic liquid-based gas sensors', in Koel M (ed.), Analytical Applications of Ionic Liquids, World Scientific Publishing Europe Limited, pp. 261 - 286, http://dx.doi.org/10.1142/9781786340726_0010
,2016, 'Recent advances in ionic liquid-based gas sensors', in Analytical Applications of Ionic Liquids, World Scientific Publishing, pp. 287 - 338, http://dx.doi.org/10.1142/9781786340726_0010
,2014, 'Electrocatalysis in Ionic Liquids', in Hardacre C; Parvulescu V (ed.), Catalysis in Ionic Liquirds, Royal Society of Chemistry, pp. 433 - 473, http://dx.doi.org/10.1039/9781849737210-00433
,2025, 'Yttrium-doped NiMo-MoO
2025, 'Ultra-stabilized Cu2 + sites in conductive MOF/t-Cu
2025, 'Elucidating proton-intercalation chemistries', National Science Review, http://dx.doi.org/10.1093/nsr/nwaf099
,2025, 'Insertion of rare earth ions into the ruthenium doped nickel iron layered double hydroxide for oxygen evolution reaction with low overpotential', International Journal of Hydrogen Energy, 109, pp. 1126 - 1132, http://dx.doi.org/10.1016/j.ijhydene.2025.02.023
,2025, 'Fluorine Doping-Assisted Reconstruction of Isolated Cu Sites for CO
2025, 'Ru-based catalysts for proton exchange membrane water electrolysers: The need to look beyond just another catalyst', International Journal of Hydrogen Energy, 102, pp. 1461 - 1479, http://dx.doi.org/10.1016/j.ijhydene.2024.12.485
,2025, 'Metallic ruthenium and ruthenium oxide heterojunctions boost acidic oxygen evolution reaction activity and durability', Electrochimica Acta, 512, http://dx.doi.org/10.1016/j.electacta.2024.145442
,2025, 'Anionic Oxidation Activity/Stability Regulated by Transition Metals in Multimetallic (Oxy)hydroxides for Alkaline Water Oxidation', ACS Catalysis, 15, pp. 44 - 53, http://dx.doi.org/10.1021/acscatal.4c03718
,2025, 'Disclosing the intrinsic electrocatalytic activity of transition-metal sulfides for enhanced water oxidation', Science China Chemistry, http://dx.doi.org/10.1007/s11426-024-2622-4
,2025, 'Dual Metal Fe–Mn–N–C Sites with Improved Stability for the Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell', Small Methods, http://dx.doi.org/10.1002/smtd.202500116
,2025, 'Low-Surface-Energy Copper Promotes Atomic Diffusion and Ordering in PtFeCu Intermetallic Compounds for Oxygen Reduction Catalysis', Advanced Functional Materials, http://dx.doi.org/10.1002/adfm.202501610
,2024, 'A High-capacity Benzoquinone Derivative Anode for All-organic Long-cycle Aqueous Proton Batteries', Angewandte Chemie - International Edition, 63, http://dx.doi.org/10.1002/anie.202412455
,2024, 'A High‐capacity Benzoquinone Derivative Anode for All‐organic Long‐cycle Aqueous Proton Batteries', Angewandte Chemie, 136, http://dx.doi.org/10.1002/ange.202412455
,2024, 'Cation Adsorption Engineering Enables Dual Stabilizations for Fast-Charging Zn─I
2024, 'Tunable Ag-Ox coordination for industrial-level carbon-negative CO
2024, 'Molecule Doping of Atomically Dispersed Cu–Au Alloy for Enhancing Electroreduction of CO to C
2024, '(Invited) How to Make Fuel Cells Cheaper and More Efficient', ECS Meeting Abstracts, MA2024-02, pp. 3063 - 3063, http://dx.doi.org/10.1149/ma2024-02443063mtgabs
,2024, 'Challenges and Opportunities for Single-Atom Electrocatalysts: From Lab-Scale Research to Potential Industry-Level Applications', Advanced Materials, 36, pp. e2404659, http://dx.doi.org/10.1002/adma.202404659
,2024, 'Unlocking Efficiency: Minimizing Energy Loss in Electrocatalysts for Water Splitting', Advanced Materials, 36, http://dx.doi.org/10.1002/adma.202404658
,2024, 'Carbothermal Reduction-Assisted Synthesis of a Carbon-Supported Highly Dispersed PtSn Nanoalloy for the Oxygen Reduction Reaction', Inorganic Chemistry, 63, pp. 19322 - 19331, http://dx.doi.org/10.1021/acs.inorgchem.4c03099
,2024, 'Challenges and Opportunities for Proton Batteries: From Electrodes, Electrolytes to Full-Cell Applications', Advanced Functional Materials, 34, http://dx.doi.org/10.1002/adfm.202405401
,2024, 'Stacking Fault-Enriched MoNi
2024, 'Fast and Sensitive Detection of Ammonia from Electrochemical Nitrogen Reduction Reactions by 1H NMR with Radiation Damping', Small Methods, 8, http://dx.doi.org/10.1002/smtd.202301373
,2024, 'Work Function-Guided Electrocatalyst Design', Advanced Materials, 36, http://dx.doi.org/10.1002/adma.202401568
,2024, 'Advancing electrochemical impedance analysis through innovations in the distribution of relaxation times method', Joule, 8, pp. 1958 - 1981, http://dx.doi.org/10.1016/j.joule.2024.05.008
,2024, 'High-performance zinc metal anode enabled by large-scale integration of superior ion transport layer', Chemical Engineering Journal, 492, http://dx.doi.org/10.1016/j.cej.2024.152114
,2024, 'Suppressed Manganese Oxides Shuttling in Acidic Electrolytes Extends Shelf-Life of Electrolytic Proton Batteries', Advanced Functional Materials, 34, http://dx.doi.org/10.1002/adfm.202315706
,2024, 'An Emerging Chemistry Revives Proton Batteries', Small Methods, 8, http://dx.doi.org/10.1002/smtd.202300699
,2024, 'In-situ construction of epitaxial phase for boosting zinc nucleation on three-dimensional interface', Progress in Natural Science: Materials International, 34, pp. 578 - 584, http://dx.doi.org/10.1016/j.pnsc.2024.05.002
,2024, 'Advancing Catalysts by Stacking Fault Defects for Enhanced Hydrogen Production: A Review', Advanced Materials, 36, http://dx.doi.org/10.1002/adma.202313378
,2024, 'Defect-balanced active and stable Co
2024, 'Deciphering Mesopore-Augmented CO
2024, 'Low-Electronegativity Mn-Contraction of PtMn Nanodendrites Boosts Oxygen Reduction Durability', Angewandte Chemie - International Edition, 63, http://dx.doi.org/10.1002/anie.202317987
,2024, 'Low‐Electronegativity Mn‐Contraction of PtMn Nanodendrites Boosts Oxygen Reduction Durability', Angewandte Chemie, 136, http://dx.doi.org/10.1002/ange.202317987
,2024, 'Hydronium Intercalation Enables High Rate in Hexagonal Molybdate Single Crystals', Advanced Materials, 36, http://dx.doi.org/10.1002/adma.202307118
,2024, 'Stable tetravalent Ni species generated by reconstruction of FeB-wrapped NiMoO pre-catalysts enable efficient water oxidation at large current densities', Applied Catalysis B: Environmental, 341, http://dx.doi.org/10.1016/j.apcatb.2023.123297
,2024, 'Performance and durability of high temperature proton exchange membrane fuel cells with silicon carbide filled polybenzimidazole composite membranes', Journal of Power Sources, 591, http://dx.doi.org/10.1016/j.jpowsour.2023.233835
,2024, 'Electrocatalysts for alkaline water electrolysis at ampere-level current densities: a review', International Journal of Hydrogen Energy, 51, pp. 667 - 684, http://dx.doi.org/10.1016/j.ijhydene.2023.07.026
,2024, 'What determines the stability of Fe-N-C catalysts in HT-PEMFCs?', International Journal of Hydrogen Energy, 50, pp. 921 - 930, http://dx.doi.org/10.1016/j.ijhydene.2023.09.190
,