Select Publications

Book Chapters

Sun Q; Dastafkan K; Zhao C, 2024, 'Electrocatalytic Reduction of CO2 to Value-Added Chemicals and Fuels', in Conversion of Water and CO2 to Fuels using Solar Energy: Science, Technology and Materials, pp. 233 - 284

Dastafkan K; Zhao C, 2022, '2 D ‐Materials‐Free Heterostructures for EC Energy Conversion', in , Wiley, pp. 3 - 51, http://dx.doi.org/10.1002/9783527831401.ch2

Sun Q; Jia C; Zhao C, 2022, 'Ionic Liquids for Electrochemical CO2 Reduction', in Encyclopedia of Ionic Liquids, Springer Nature Singapore, pp. 1 - 22, http://dx.doi.org/10.1007/978-981-10-6739-6_148-1

Sun Q; Jia C; Zhao C, 2022, 'Ionic Liquids for Electrochemical CO2 Reduction', in Encyclopedia of Ionic Liquids, Springer Nature Singapore, pp. 676 - 696, http://dx.doi.org/10.1007/978-981-33-4221-7_148

Dastafkan K; Zhao C, 2021, '2D-Materials-Free Heterostructures for EC Energy Conversion', in Atomic and Nano Scale Materials for Advanced Energy Conversion: Volume 1, pp. 5 - 51, http://dx.doi.org/10.1002/9783527831401.ch2

Liu G; Dastafkan K; Zhao C, 2021, 'Electrochemical Water Splitting', in Heterogeneous Catalysts: Advanced Design, Characterization and Applications: Volume 1 and 2, pp. 533 - 555, http://dx.doi.org/10.1002/9783527813599.ch30

Zhao C; Gondosiswanto R; Hibbert DB, 2018, 'Smart Ionic Liquids-based Gas Sensors', in Ionic Liquid Devices, Royal Society of Chemistry, pp. 337 - 364, http://dx.doi.org/10.1039/9781788011839-00337

Zhao C, 2017, 'Education Intelligence Should Be the Breakthrough in Intelligence Science', in Communications in Computer and Information Science, Springer International Publishing, pp. 424 - 434, http://dx.doi.org/10.1007/978-3-319-62698-7_35

Zhao C; Gunawan C; Ge M; Gondosiswanto R; Aldous L, 2016, 'Recent advances in ionic liquid-based gas sensors', in Koel M (ed.), Analytical Applications of Ionic Liquids, World Scientific Publishing Europe Limited, pp. 261 - 286, http://dx.doi.org/10.1142/9781786340726_0010

Zhao C; Gunawan C; Ge M; Gondosiswanto R; Aldous L, 2016, 'Recent advances in ionic liquid-based gas sensors', in Analytical Applications of Ionic Liquids, World Scientific Publishing, pp. 287 - 338, http://dx.doi.org/10.1142/9781786340726_0010

Aldous L; Khan A; Hossain MM; Zhao C, 2014, 'Electrocatalysis in Ionic Liquids', in Hardacre C; Parvulescu V (ed.), Catalysis in Ionic Liquirds, Royal Society of Chemistry, pp. 433 - 473, http://dx.doi.org/10.1039/9781849737210-00433

Journal articles

Yang K; Zhu Z; He X; Song R; Liao X; Wu L; Duan Y; Zhao C; Tahir M; Dai J; Tang H; He L, 2024, 'High-performance zinc metal anode enabled by large-scale integration of superior ion transport layer', Chemical Engineering Journal, 492, http://dx.doi.org/10.1016/j.cej.2024.152114

Zhao Y; Shi Z; Li F; Jia C; Sun Q; Su Z; Zhao C, 2024, 'Deciphering Mesopore-Augmented CO2 Electroreduction over Atomically Dispersed Fe-N-doped Carbon Catalysts', ACS Catalysis, 14, pp. 3926 - 3932, http://dx.doi.org/10.1021/acscatal.3c05144

Nie Y; Sun Y; Song B; Meyer Q; Liu S; Guo H; Tao L; Lin F; Luo M; Zhang Q; Gu L; Yang L; Zhao C; Guo S, 2024, 'Low-Electronegativity Mn-Contraction of PtMn Nanodendrites Boosts Oxygen Reduction Durability', Angewandte Chemie - International Edition, 63, http://dx.doi.org/10.1002/anie.202317987

Nie Y; Sun Y; Song B; Meyer Q; Liu S; Guo H; Tao L; Lin F; Luo M; Zhang Q; Gu L; Yang L; Zhao C; Guo S, 2024, 'Low‐Electronegativity Mn‐Contraction of PtMn Nanodendrites Boosts Oxygen Reduction Durability', Angewandte Chemie, 136, http://dx.doi.org/10.1002/ange.202317987

Guo H; Wu S; Chen W; Su Z; Wang Q; Sharma N; Rong C; Fleischmann S; Liu Z; Zhao C, 2024, 'Hydronium Intercalation Enables High Rate in Hexagonal Molybdate Single Crystals', Advanced Materials, 36, http://dx.doi.org/10.1002/adma.202307118

Zhang Y; Dastafkan K; Zhao Q; Li J; Zhao C; Liu G, 2024, 'Stable tetravalent Ni species generated by reconstruction of FeB-wrapped NiMoO pre-catalysts enable efficient water oxidation at large current densities', Applied Catalysis B: Environmental, 341, http://dx.doi.org/10.1016/j.apcatb.2023.123297

Schonvogel D; Belack J; Vidakovic J; Schmies H; Uhlig LM; Langnickel H; Man Tung PK; Meyer Q; Zhao C; Wagner P, 2024, 'Performance and durability of high temperature proton exchange membrane fuel cells with silicon carbide filled polybenzimidazole composite membranes', Journal of Power Sources, 591, http://dx.doi.org/10.1016/j.jpowsour.2023.233835

Zou Z; Dastafkan K; Shao Y; Zhao C; Wang Q, 2024, 'Electrocatalysts for alkaline water electrolysis at ampere-level current densities: a review', International Journal of Hydrogen Energy, 51, pp. 667 - 684, http://dx.doi.org/10.1016/j.ijhydene.2023.07.026

Müller-Hülstede J; Schmies H; Schonvogel D; Meyer Q; Nie Y; Zhao C; Wagner P; Wark M, 2024, 'What determines the stability of Fe-N-C catalysts in HT-PEMFCs?', International Journal of Hydrogen Energy, 50, pp. 921 - 930, http://dx.doi.org/10.1016/j.ijhydene.2023.09.190

Wang Y; Wang T; Arandiyan H; Song G; Sun H; Sabri Y; Zhao C; Shao Z; Kawi S, 2024, 'Advancing Catalysts by Stacking Fault Defects for Enhanced Hydrogen Production: A Review', Advanced Materials, http://dx.doi.org/10.1002/adma.202313378

Assafiri A; Jia C; Thomas DS; Hibbert DB; Zhao C, 2024, 'Fast and Sensitive Detection of Ammonia from Electrochemical Nitrogen Reduction Reactions by 1H NMR with Radiation Damping', Small Methods, http://dx.doi.org/10.1002/smtd.202301373

Wu S; Guo H; Su Z; Jia C; Zhang X; Wang S; Zhao T; Meyer Q; Zhao C, 2024, 'Suppressed Manganese Oxides Shuttling in Acidic Electrolytes Extends Shelf-Life of Electrolytic Proton Batteries', Advanced Functional Materials, http://dx.doi.org/10.1002/adfm.202315706

Chen Z; Ma T; Wei W; Wong WY; Zhao C; Ni BJ, 2024, 'Work Function-Guided Electrocatalyst Design', Advanced Materials, http://dx.doi.org/10.1002/adma.202401568

Ahmed MI; Assafiri A; Hibbert DB; Zhao C, 2023, 'Li-Mediated Electrochemical Nitrogen Fixation: Key Advances and Future Perspectives', Small, 19, http://dx.doi.org/10.1002/smll.202305616

Zou Z; Zheng Z; Chen Y; Shao Y; Zheng X; Zhao C; Wang Q, 2023, 'Ethanol combustion-assisted fast synthesis of tri-metal oxides with reduced graphene oxide for superior overall water splitting performance', Inorganic Chemistry Frontiers, 11, pp. 837 - 844, http://dx.doi.org/10.1039/d3qi02046k

Rong C; Dastafkan K; Wang Y; Zhao C, 2023, 'Breaking the Activity and Stability Bottlenecks of Electrocatalysts for Oxygen Evolution Reactions in Acids', Advanced Materials, 35, http://dx.doi.org/10.1002/adma.202211884

Wang YD; Meyer Q; Tang K; McClure JE; White RT; Kelly ST; Crawford MM; Iacoviello F; Brett DJL; Shearing PR; Mostaghimi P; Zhao C; Armstrong RT, 2023, 'Large-scale physically accurate modelling of real proton exchange membrane fuel cell with deep learning', Nature Communications, 14, http://dx.doi.org/10.1038/s41467-023-35973-8

Dastafkan K; Shen X; Hocking RK; Meyer Q; Zhao C, 2023, 'Monometallic interphasic synergy via nano-hetero-interfacing for hydrogen evolution in alkaline electrolytes', Nature Communications, 14, http://dx.doi.org/10.1038/s41467-023-36100-3

Meyer Q; Yang C; Cheng Y; Zhao C, 2023, 'Overcoming the Electrode Challenges of High-Temperature Proton Exchange Membrane Fuel Cells', Electrochemical Energy Reviews, 6, http://dx.doi.org/10.1007/s41918-023-00180-y

Ahmed MI; Hibbert DB; Zhao C, 2023, 'Rational catalyst design and mechanistic evaluation for electrochemical nitrogen reduction at ambient conditions', Green Energy and Environment, 8, pp. 1567 - 1595, http://dx.doi.org/10.1016/j.gee.2022.10.001

Su Z; Guo H; Zhao C, 2023, 'Rational Design of Electrode–Electrolyte Interphase and Electrolytes for Rechargeable Proton Batteries', Nano-Micro Letters, 15, http://dx.doi.org/10.1007/s40820-023-01071-z

Butson JD; Sharma A; Tournet J; Wang Y; Tatavarti R; Zhao C; Jagadish C; Tan HH; Karuturi S, 2023, 'Unlocking Ultra-High Performance in Immersed Solar Water Splitting with Optimised Energetics', Advanced Energy Materials, 13, http://dx.doi.org/10.1002/aenm.202301793

Jia C; Zhao Y; Song S; Sun Q; Meyer Q; Liu S; Shen Y; Zhao C, 2023, 'Highly Ordered Hierarchical Porous Single-Atom Fe Catalyst with Promoted Mass Transfer for Efficient Electroreduction of CO2', Advanced Energy Materials, 13, http://dx.doi.org/10.1002/aenm.202302007

Pivac I; Meyer Q; Zhao C; Barbir F, 2023, 'Operando investigations of proton exchange membrane fuel cells performance during air interruptions in dry and humidified conditions', Journal of Power Sources, 580, http://dx.doi.org/10.1016/j.jpowsour.2023.233418

Xiao Y; Dastafkan K; Su Z; Rong C; Zhao C, 2023, 'Decoupling the contributions of industrially relevant conditions to the stability of binary and ternary FeNi-based catalysts for alkaline water oxidation', Journal of Materials Chemistry A, 11, pp. 19418 - 19426, http://dx.doi.org/10.1039/d3ta03905f

Liu S; Meyer Q; Jia C; Wang S; Rong C; Nie Y; Zhao C, 2023, 'Operando deconvolution of the degradation mechanisms of iron-nitrogen-carbon catalysts in proton exchange membrane fuel cells', Energy and Environmental Science, 16, pp. 3792 - 3802, http://dx.doi.org/10.1039/d3ee01166f

Zhao T; Wang S; Jia C; Rong C; Su Z; Dastafkan K; Zhang Q; Zhao C, 2023, 'Cooperative Boron and Vanadium Doping of Nickel Phosphides for Hydrogen Evolution in Alkaline and Anion Exchange Membrane Water/Seawater Electrolyzers', Small, 19, http://dx.doi.org/10.1002/smll.202208076

Jia C; Sun Q; Zhao C, 2023, 'From bulk metals to single-atoms: design of efficient catalysts for the electroreduction of CO2', Chemical Communications, 59, pp. 7731 - 7742, http://dx.doi.org/10.1039/d3cc01581e

Zhao C; Pan Y; Li R; Hu A; Zhou B; He M; Chen J; Yan Z; Fan Y; Chen N; Liu M; Long J, 2023, 'A safe anode-free lithium metal pouch cell enabled by integrating stable quasi-solid electrolytes with oxygen-free cathodes', Chemical Engineering Journal, 463, http://dx.doi.org/10.1016/j.cej.2023.142386

Sun Q; Zhao Y; Tan X; Jia C; Su Z; Meyer Q; Ahmed MI; Zhao C, 2023, 'Atomically Dispersed Cu-Au Alloy for Efficient Electrocatalytic Reduction of Carbon Monoxide to Acetate', ACS Catalysis, 13, pp. 5689 - 5696, http://dx.doi.org/10.1021/acscatal.2c06145

Xia Y; Cheng Y; Wang R; Meng Z; Meyer Q; Zhao C; Zhang H; Luo R; Li Y; Tang H, 2023, 'Porous nanosheet composite with multi-type active centers as an efficient and stable oxygen electrocatalyst in alkaline and acid conditions', Science China Materials, 66, pp. 1407 - 1416, http://dx.doi.org/10.1007/s40843-022-2272-2

Müller-Hülstede J; Uhlig LM; Schmies H; Schonvogel D; Meyer Q; Nie Y; Zhao C; Vidakovic J; Wagner P, 2023, 'Towards the Reduction of Pt Loading in High Temperature Proton Exchange Membrane Fuel Cells – Effect of Fe−N−C in Pt-Alloy Cathodes', ChemSusChem, 16, http://dx.doi.org/10.1002/cssc.202202046

Su Z; Tang J; Chen J; Guo H; Wu S; Yin S; Zhao T; Jia C; Meyer Q; Rawal A; Ho J; Fang Y; Zhao C, 2023, 'Co-insertion of Water with Protons into Organic Electrodes Enables High-Rate and High-Capacity Proton Batteries', Small Structures, 4, http://dx.doi.org/10.1002/sstr.202200257

Wang S; Liu X; Chen X; Dastafkan K; Fu ZH; Tan X; Zhang Q; Zhao C, 2023, 'Super-exchange effect induced by early 3d metal doping on NiFe2O4(0 0 1) surface for oxygen evolution reaction', Journal of Energy Chemistry, 78, pp. 21 - 29, http://dx.doi.org/10.1016/j.jechem.2022.11.025

Chen Y; Zeng X; Meyer Q; Zhao C; He Z; Wu F; Tang H; Cheng Y, 2023, 'An outstanding NiFe/NF oxygen evolution reaction boosted by the hydroxyl oxides', Electrochimica Acta, 442, http://dx.doi.org/10.1016/j.electacta.2023.141862

Meyer Q; Liu S; Ching K; Da Wang Y; Zhao C, 2023, 'Operando monitoring of the evolution of triple-phase boundaries in proton exchange membrane fuel cells', Journal of Power Sources, 557, http://dx.doi.org/10.1016/j.jpowsour.2022.232539

Quattrocchi E; Py B; Maradesa A; Meyer Q; Zhao C; Ciucci F, 2023, 'Deconvolution of electrochemical impedance spectroscopy data using the deep-neural-network-enhanced distribution of relaxation times', Electrochimica Acta, 439, http://dx.doi.org/10.1016/j.electacta.2022.141499

Tang J; Liang Z; Qin H; Liu X; Zhai B; Su Z; Liu Q; Lei H; Liu K; Zhao C; Cao R; Fang Y, 2023, 'Large-area Free-standing Metalloporphyrin-based Covalent Organic Framework Films by Liquid-air Interfacial Polymerization for Oxygen Electrocatalysis', Angewandte Chemie - International Edition, 62, http://dx.doi.org/10.1002/anie.202214449

Tang J; Liang Z; Qin H; Liu X; Zhai B; Su Z; Liu Q; Lei H; Liu K; Zhao C; Cao R; Fang Y, 2023, 'Large‐area Free‐standing Metalloporphyrin‐based Covalent Organic Framework Films by Liquid‐air Interfacial Polymerization for Oxygen Electrocatalysis', Angewandte Chemie, 135, http://dx.doi.org/10.1002/ange.202214449


Back to profile page