ORCID as entered in ROS

Select Publications
Dastafkan K; Zhao C, 2022, '2
Sun Q; Jia C; Zhao C, 2022, 'Ionic Liquids for Electrochemical CO2 Reduction', in Encyclopedia of Ionic Liquids, Springer Nature Singapore, pp. 1 - 22, http://dx.doi.org/10.1007/978-981-10-6739-6_148-1
Liu G; Dastafkan K; Zhao C, 2021, 'Electrochemical Water Splitting', in , Wiley, pp. 533 - 555, http://dx.doi.org/10.1002/9783527813599.ch30
Zhao C; Gondosiswanto R; Hibbert DB, 2018, 'Smart Ionic Liquids-based Gas Sensors', in Ionic Liquid Devices, edn. 28, Royal Society of Chemistry, pp. 337 - 364, http://dx.doi.org/10.1039/9781788011839-00337
Zhao C; Gunawan C; Ge M; Gondosiswanto R; Aldous L, 2016, 'Recent advances in ionic liquid-based gas sensors', in Koel M (ed.), Analytical Applications of Ionic Liquids, World Scientific Publishing Europe Limited, pp. 261 - 286, http://dx.doi.org/10.1142/9781786340726_0010
Zhao C; Gunawan C; Ge M; Gondosiswanto R; Aldous L, 2016, 'Recent advances in ionic liquid-based gas sensors', in Analytical Applications of Ionic Liquids, World Scientific Publishing, pp. 287 - 338, http://dx.doi.org/10.1142/9781786340726_0010
Aldous L; Khan A; Hossain MM; Zhao C, 2014, 'Electrocatalysis in Ionic Liquids', in Hardacre C; Parvulescu V (ed.), Catalysis in Ionic Liquirds, edn. 15, Royal Society of Chemistry, pp. 433 - 473, http://dx.doi.org/10.1039/9781849737210-00433
Wang S; Liu X; Chen X; Dastafkan K; Fu ZH; Tan X; Zhang Q; Zhao C, 2023, 'Super-exchange effect induced by early 3d metal doping on NiFe
Chen Y; Zeng X; Meyer Q; Zhao C; He Z; Wu F; Tang H; Cheng Y, 2023, 'An outstanding NiFe/NF oxygen evolution reaction boosted by the hydroxyl oxides', Electrochimica Acta, vol. 442, http://dx.doi.org/10.1016/j.electacta.2023.141862
Meyer Q; Liu S; Ching K; Da Wang Y; Zhao C, 2023, 'Operando monitoring of the evolution of triple-phase boundaries in proton exchange membrane fuel cells', Journal of Power Sources, vol. 557, pp. 232539 - 232539, http://dx.doi.org/10.1016/j.jpowsour.2022.232539
Quattrocchi E; Py B; Maradesa A; Meyer Q; Zhao C; Ciucci F, 2023, 'Deconvolution of electrochemical impedance spectroscopy data using the deep-neural-network-enhanced distribution of relaxation times', Electrochimica Acta, vol. 439, pp. 141499 - 141499, http://dx.doi.org/10.1016/j.electacta.2022.141499
Su Z; Tang J; Chen J; Guo H; Wu S; Yin S; Zhao T; Jia C; Meyer Q; Rawal A; Ho J; Fang Y; Zhao C, 2023, 'Co-insertion of Water with Protons into Organic Electrodes Enables High-Rate and High-Capacity Proton Batteries', SMALL STRUCTURES, http://dx.doi.org/10.1002/sstr.202200257
Tang J; Liang Z; Qin H; Liu X; Zhai B; Su Z; Liu Q; Lei H; Liu K; Zhao C; Cao R; Fang Y, 2023, 'Large-area Free-standing Metalloporphyrin-based Covalent Organic Framework Films by Liquid-air Interfacial Polymerization for Oxygen Electrocatalysis', Angewandte Chemie - International Edition, vol. 62, http://dx.doi.org/10.1002/anie.202214449
Tang J; Liang Z; Qin H; Liu X; Zhai B; Su Z; Liu Q; Lei H; Liu K; Zhao C; Cao R; Fang Y, 2023, 'Large‐area Free‐standing Metalloporphyrin‐based Covalent Organic Framework Films by Liquid‐air Interfacial Polymerization for Oxygen Electrocatalysis', Angewandte Chemie, vol. 135, http://dx.doi.org/10.1002/ange.202214449
Zhao X; Gao T; Ren W; Zhao C; Liu ZH; Li L, 2022, 'Highly active CoP-Co
Wu S; Chen J; Su Z; Guo H; Zhao T; Jia C; Stansby J; Tang J; Rawal A; Fang Y; Ho J; Zhao C, 2022, 'Molecular Crowding Electrolytes for Stable Proton Batteries', Small, vol. 18, http://dx.doi.org/10.1002/smll.202202992
Guo H; Wan L; Tang J; Wu S; Su Z; Sharma N; Fang Y; Liu Z; Zhao C, 2022, 'Stable colloid-in-acid electrolytes for long life proton batteries', Nano Energy, vol. 102, pp. 107642 - 107642, http://dx.doi.org/10.1016/j.nanoen.2022.107642
Zhao C; Sharma N, 2022, 'Editorial overview: Electrochemical materials and engineering 2022 Energy materials and concepts that enable a green and clean future', Current Opinion in Electrochemistry, vol. 35, http://dx.doi.org/10.1016/j.coelec.2022.101076
Zhao T; Wang S; Li Y; Jia C; Su Z; Hao D; Ni BJ; Zhang Q; Zhao C, 2022, 'Heterostructured V-Doped Ni
Jia C; Shi Z; Zhao C, 2022, 'The porosity engineering for single-atom metal-nitrogen-carbon catalysts for the electroreduction of CO
Li M; Yang K; Abdinejad M; Zhao C; Burdyny T, 2022, 'Advancing integrated CO
Bo X; Zan L; Jia R; Dastafkan K; Zhao C, 2022, 'The nature of synergistic effects in transition metal oxides/in-situ intermediate-hydroxides for enhanced oxygen evolution reaction', Current Opinion in Electrochemistry, vol. 34, pp. 100987 - 100987, http://dx.doi.org/10.1016/j.coelec.2022.100987
Müller-Hülstede J; Zierdt T; Schmies H; Schonvogel D; Meyer Q; Zhao C; Wagner P; Wark M, 2022, 'Implementation of different Fe–N–C catalysts in high temperature proton exchange membrane fuel cells – Effect of catalyst and catalyst layer on performance', Journal of Power Sources, vol. 537, http://dx.doi.org/10.1016/j.jpowsour.2022.231529
Xiao Y; Dastafkan K; Li Y; Zhao T; Su Z; Qi H; Zhao C, 2022, 'Oxygen Corrosion Engineering of Nonprecious Ternary Metal Hydroxides toward Oxygen Evolution Reaction', ACS Sustainable Chemistry and Engineering, vol. 10, pp. 8597 - 8604, http://dx.doi.org/10.1021/acssuschemeng.2c02114
Sun Q; Jia C; Zhao Y; Zhao C, 2022, 'Single atom-based catalysts for electrochemical CO
Ren W; Tan X; Jia C; Krammer A; Sun Q; Qu J; Smith SC; Schueler A; Hu X; Zhao C, 2022, 'Electronic Regulation of Nickel Single Atoms by Confined Nickel Nanoparticles for Energy-Efficient CO
Ren W; Tan X; Jia C; Krammer A; Sun Q; Qu J; Smith SC; Schueler A; Hu X; Zhao C, 2022, 'Electronic Regulation of Nickel Single Atoms by Confined Nickel Nanoparticles for Energy‐Efficient CO 2 Electroreduction', Angewandte Chemie, vol. 134, http://dx.doi.org/10.1002/ange.202203335
Meyer Q; Liu S; Li Y; Zhao C, 2022, 'Operando detection of oxygen reduction reaction kinetics of Fe–N–C catalysts in proton exchange membrane fuel cells', Journal of Power Sources, vol. 533, http://dx.doi.org/10.1016/j.jpowsour.2022.231058
Su Z; Chen J; Stansby J; Jia C; Zhao T; Tang J; Fang Y; Rawal A; Ho J; Zhao C, 2022, 'Hydrogen-Bond Disrupting Electrolytes for Fast and Stable Proton Batteries', Small, vol. 18, http://dx.doi.org/10.1002/smll.202201449
Zhao H; Yang S; Yang W; Zhao C; Cao M; Cao R, 2022, 'Ultrasmall Mo
Tang K; Meyer Q; White R; Armstrong RT; Mostaghimi P; Da Wang Y; Liu S; Zhao C; Regenauer-Lieb K; Tung PKM, 2022, 'Deep learning for full-feature X-ray microcomputed tomography segmentation of proton electron membrane fuel cells', Computers and Chemical Engineering, vol. 161, pp. 107768 - 107768, http://dx.doi.org/10.1016/j.compchemeng.2022.107768
Rong C; Shen X; Wang Y; Thomsen L; Zhao T; Li Y; Lu X; Amal R; Zhao C, 2022, 'Electronic Structure Engineering of Single-Atom Ru Sites via Co–N4 Sites for Bifunctional pH-Universal Water Splitting', Advanced Materials, vol. 34, pp. e2110103, http://dx.doi.org/10.1002/adma.202110103
Sun Q; Zhao Y; Ren W; Zhao C, 2022, 'Electroreduction of low concentration CO
Zhang Y; Chen X; Cen W; Ren W; Guo H; Wu S; Xiao Y; Chen S; Guo Y; Xiao D; Zhao C, 2022, 'Flash-assisted doping graphene for ultrafast potassium transport', Nano Research, vol. 15, pp. 4083 - 4090, http://dx.doi.org/10.1007/s12274-021-4023-6
Chen C; He S; Dastafkan K; Zou Z; Wang Q; Zhao C, 2022, 'Sea urchin-like NiMoO
Tang J; Zhai B; Liu X; Liu J; Zhao C; Fang Y, 2022, 'Interfacially confined preparation of copper Porphyrin-contained nanofilms towards High-performance Strain-Pressure monitoring', Journal of Colloid and Interface Science, vol. 612, pp. 516 - 524, http://dx.doi.org/10.1016/j.jcis.2022.01.007
Lei H; Han H; Wang G; Mukherjee S; Bian H; Liu J; Zhao C; Fang Y, 2022, 'Self-Assembly of Amphiphilic BODIPY Derivatives on Micropatterned Ionic Liquid Surfaces for Fluorescent Films with Excellent Stability and Sensing Performance', ACS Applied Materials and Interfaces, vol. 14, pp. 13962 - 13969, http://dx.doi.org/10.1021/acsami.2c01417
Qu J; Yang W; Wu T; Ren W; Huang J; Yu H; Zhao C; Griffith MJ; Zheng R; Ringer SP; Cairney JM, 2022, 'Atom probe specimen preparation methods for nanoparticles', Ultramicroscopy, vol. 233, http://dx.doi.org/10.1016/j.ultramic.2021.113420
Liu JN; Zhao CX; Ren D; Wang J; Zhang R; Wang SH; Zhao C; Li BQ; Zhang Q, 2022, 'Preconstructing Asymmetric Interface in Air Cathodes for High-Performance Rechargeable Zn–Air Batteries', Advanced Materials, vol. 34, pp. e2109407, http://dx.doi.org/10.1002/adma.202109407
Liu S; Meyer Q; Li Y; Zhao T; Su Z; Ching K; Zhao C, 2022, 'Fe-N-C/Fe nanoparticle composite catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells', Chemical Communications, vol. 58, pp. 2323 - 2326, http://dx.doi.org/10.1039/d1cc07042h
Wang Y; Yan L; Dastafkan K; Zhao C; Zhao X; Xue Y; Huo J; Li S; Zhai Q, 2022, 'Correction to: Lattice Matching Growth of Conductive Hierarchical Porous MOF/LDH Heteronanotube Arrays for Highly Efficient Water Oxidation (Advanced Materials, (2021), 33, 8, (2006351), 10.1002/adma.202006351)', Advanced Materials, vol. 34, http://dx.doi.org/10.1002/adma.202109927
Jia C; Dastafkan K; Zhao C, 2022, 'Key factors for designing single-atom metal-nitrogen-carbon catalysts for electrochemical CO
Ahmed MI; Arachchige LJ; Su Z; Hibbert DB; Sun C; Zhao C, 2022, 'Nitrogenase-Inspired Atomically Dispersed Fe-S-C Linkages for Improved Electrochemical Reduction of Dinitrogen to Ammonia', ACS Catalysis, vol. 12, pp. 1443 - 1451, http://dx.doi.org/10.1021/acscatal.1c05174
Dastafkan K; Wang S; Rong C; Meyer Q; Li Y; Zhang Q; Zhao C, 2022, 'Cosynergistic Molybdate Oxo-Anionic Modification of FeNi-Based Electrocatalysts for Efficient Oxygen Evolution Reaction', Advanced Functional Materials, vol. 32, http://dx.doi.org/10.1002/adfm.202107342
Ching K; Baker A; Tanaka R; Zhao T; Su Z; Ruoff RS; Zhao C; Chen X, 2022, 'Liquid-phase water isotope separation using graphene-oxide membranes', Carbon, vol. 186, pp. 344 - 354, http://dx.doi.org/10.1016/j.carbon.2021.10.009
Xia Y; Cheng Y; Wang R; Meng Z; Meyer Q; Zhao C; Zhang H; Luo R; Li Y; Tang H, 2022, 'Porous nanosheet composite with multi-type active centers as an efficient and stable oxygen electrocatalyst in alkaline and acid conditions', Science China Materials, http://dx.doi.org/10.1007/s40843-022-2272-2
Ahmed MI; Hibbert DB; Zhao C, 2022, 'Rational catalyst design and mechanistic evaluation for electrochemical nitrogen reduction at ambient conditions', Green Energy and Environment, http://dx.doi.org/10.1016/j.gee.2022.10.001
Butson JD; Sharma A; Chen H; Wang Y; Lee Y; Varadhan P; Tsampas MN; Zhao C; Tricoli A; Tan HH; Jagadish C; Karuturi S, 2022, 'Surface-Structured Cocatalyst Foils Unraveling a Pathway to High-Performance Solar Water Splitting', Advanced Energy Materials, vol. 12, pp. 2102752 - 2102752, http://dx.doi.org/10.1002/aenm.202102752
Müller-Hülstede J; Uhlig LM; Schmies H; Schonvogel D; Meyer Q; Nie Y; Zhao C; Vidakovic J; Wagner P, 2022, 'Towards the Reduction of Pt Loading in High Temperature Proton Exchange Membrane Fuel Cells – Effect of Fe−N−C in Pt-Alloy Cathodes', ChemSusChem, http://dx.doi.org/10.1002/cssc.202202046
Zhang D; Li H; Riaz A; Sharma A; Liang W; Wang Y; Chen H; Vora K; Yan D; Su Z; Tricoli A; Zhao C; Beck FJ; Reuter K; Catchpole K; Karuturi S, 2022, 'Unconventional direct synthesis of Ni