ORCID as entered in ROS

Select Publications
2022, '2
2022, 'Ionic Liquids for Electrochemical CO2 Reduction', in Encyclopedia of Ionic Liquids, Springer Nature Singapore, pp. 1 - 22, http://dx.doi.org/10.1007/978-981-10-6739-6_148-1
,2022, 'Ionic Liquids for Electrochemical CO2 Reduction', in Encyclopedia of Ionic Liquids, Springer Nature Singapore, pp. 676 - 696, http://dx.doi.org/10.1007/978-981-33-4221-7_148
,2021, 'Electrochemical Water Splitting', in Heterogeneous Catalysts: Advanced Design, Characterization and Applications: Volume 1 and 2, Wiley, pp. 533 - 555, http://dx.doi.org/10.1002/9783527813599.ch30
,2018, 'Smart Ionic Liquids-based Gas Sensors', in Ionic Liquid Devices, edn. 28, Royal Society of Chemistry, pp. 337 - 364, http://dx.doi.org/10.1039/9781788011839-00337
,2016, 'Recent advances in ionic liquid-based gas sensors', in Koel M (ed.), Analytical Applications of Ionic Liquids, World Scientific Publishing Europe Limited, pp. 261 - 286, http://dx.doi.org/10.1142/9781786340726_0010
,2016, 'Recent advances in ionic liquid-based gas sensors', in Analytical Applications of Ionic Liquids, World Scientific Publishing, pp. 287 - 338, http://dx.doi.org/10.1142/9781786340726_0010
,2014, 'Electrocatalysis in Ionic Liquids', in Hardacre C; Parvulescu V (ed.), Catalysis in Ionic Liquirds, edn. 15, Royal Society of Chemistry, pp. 433 - 473, http://dx.doi.org/10.1039/9781849737210-00433
,2023, 'Large-scale physically accurate modelling of real proton exchange membrane fuel cell with deep learning', Nature Communications, 14, pp. 745, http://dx.doi.org/10.1038/s41467-023-35973-8
,2023, 'Monometallic interphasic synergy via nano-hetero-interfacing for hydrogen evolution in alkaline electrolytes', Nature Communications, 14, pp. 547, http://dx.doi.org/10.1038/s41467-023-36100-3
,2023, 'Overcoming the Electrode Challenges of High-Temperature Proton Exchange Membrane Fuel Cells', Electrochemical Energy Reviews, 6, http://dx.doi.org/10.1007/s41918-023-00180-y
,2023, 'Rational Design of Electrode–Electrolyte Interphase and Electrolytes for Rechargeable Proton Batteries', Nano-Micro Letters, 15, http://dx.doi.org/10.1007/s40820-023-01071-z
,2023, 'Chromium-doped inverse spinel electrocatalysts with optimal orbital occupancy for facilitating reaction kinetics of lithium-oxygen batteries', Journal of Colloid and Interface Science, 645, pp. 439 - 447, http://dx.doi.org/10.1016/j.jcis.2023.04.128
,2023, 'From bulk metals to single-atoms: design of efficient catalysts for the electroreduction of CO2.', Chem Commun (Camb), http://dx.doi.org/10.1039/d3cc01581e
,2023, 'Atomically Dispersed Cu-Au Alloy for Efficient Electrocatalytic Reduction of Carbon Monoxide to Acetate', ACS Catalysis, 13, pp. 5689 - 5696, http://dx.doi.org/10.1021/acscatal.2c06145
,2023, 'Porous nanosheet composite with multi-type active centers as an efficient and stable oxygen electrocatalyst in alkaline and acid conditions', Science China Materials, 66, pp. 1407 - 1416, http://dx.doi.org/10.1007/s40843-022-2272-2
,2023, 'Towards the Reduction of Pt Loading in High Temperature Proton Exchange Membrane Fuel Cells – Effect of Fe−N−C in Pt-Alloy Cathodes', ChemSusChem, 16, http://dx.doi.org/10.1002/cssc.202202046
,2023, 'Super-exchange effect induced by early 3d metal doping on NiFe
2023, 'An outstanding NiFe/NF oxygen evolution reaction boosted by the hydroxyl oxides', Electrochimica Acta, 442, http://dx.doi.org/10.1016/j.electacta.2023.141862
,2023, 'Operando monitoring of the evolution of triple-phase boundaries in proton exchange membrane fuel cells', Journal of Power Sources, 557, pp. 232539 - 232539, http://dx.doi.org/10.1016/j.jpowsour.2022.232539
,2023, 'Deconvolution of electrochemical impedance spectroscopy data using the deep-neural-network-enhanced distribution of relaxation times', Electrochimica Acta, 439, pp. 141499 - 141499, http://dx.doi.org/10.1016/j.electacta.2022.141499
,2023, 'Co-insertion of Water with Protons into Organic Electrodes Enables High-Rate and High-Capacity Proton Batteries', SMALL STRUCTURES, http://dx.doi.org/10.1002/sstr.202200257
,2023, 'Large-area Free-standing Metalloporphyrin-based Covalent Organic Framework Films by Liquid-air Interfacial Polymerization for Oxygen Electrocatalysis', Angewandte Chemie - International Edition, 62, http://dx.doi.org/10.1002/anie.202214449
,2023, 'Large‐area Free‐standing Metalloporphyrin‐based Covalent Organic Framework Films by Liquid‐air Interfacial Polymerization for Oxygen Electrocatalysis', Angewandte Chemie, 135, http://dx.doi.org/10.1002/ange.202214449
,2023, 'Cooperative Boron and Vanadium Doping of Nickel Phosphides for Hydrogen Evolution in Alkaline and Anion Exchange Membrane Water/Seawater Electrolyzers', Small, http://dx.doi.org/10.1002/smll.202208076
,2023, 'Molecular Copper Phthalocyanine and FeOOH Modified BiVO
2022, 'Highly active CoP-Co
2022, 'Molecular Crowding Electrolytes for Stable Proton Batteries', Small, 18, http://dx.doi.org/10.1002/smll.202202992
,2022, 'Stable colloid-in-acid electrolytes for long life proton batteries', Nano Energy, 102, pp. 107642 - 107642, http://dx.doi.org/10.1016/j.nanoen.2022.107642
,2022, 'Editorial overview: Electrochemical materials and engineering 2022 Energy materials and concepts that enable a green and clean future', Current Opinion in Electrochemistry, 35, http://dx.doi.org/10.1016/j.coelec.2022.101076
,2022, 'Heterostructured V-Doped Ni
2022, 'The porosity engineering for single-atom metal-nitrogen-carbon catalysts for the electroreduction of CO
2022, 'Advancing integrated CO
2022, 'The nature of synergistic effects in transition metal oxides/in-situ intermediate-hydroxides for enhanced oxygen evolution reaction', Current Opinion in Electrochemistry, 34, pp. 100987 - 100987, http://dx.doi.org/10.1016/j.coelec.2022.100987
,2022, 'Implementation of different Fe–N–C catalysts in high temperature proton exchange membrane fuel cells – Effect of catalyst and catalyst layer on performance', Journal of Power Sources, 537, http://dx.doi.org/10.1016/j.jpowsour.2022.231529
,2022, 'Oxygen Corrosion Engineering of Nonprecious Ternary Metal Hydroxides toward Oxygen Evolution Reaction', ACS Sustainable Chemistry and Engineering, 10, pp. 8597 - 8604, http://dx.doi.org/10.1021/acssuschemeng.2c02114
,2022, 'Single atom-based catalysts for electrochemical CO
2022, 'Electronic Regulation of Nickel Single Atoms by Confined Nickel Nanoparticles for Energy-Efficient CO
2022, 'Electronic Regulation of Nickel Single Atoms by Confined Nickel Nanoparticles for Energy‐Efficient CO 2 Electroreduction', Angewandte Chemie, 134, http://dx.doi.org/10.1002/ange.202203335
,2022, 'Operando detection of oxygen reduction reaction kinetics of Fe–N–C catalysts in proton exchange membrane fuel cells', Journal of Power Sources, 533, http://dx.doi.org/10.1016/j.jpowsour.2022.231058
,2022, 'Hydrogen-Bond Disrupting Electrolytes for Fast and Stable Proton Batteries', Small, 18, http://dx.doi.org/10.1002/smll.202201449
,2022, 'Ultrasmall Mo
2022, 'Deep learning for full-feature X-ray microcomputed tomography segmentation of proton electron membrane fuel cells', Computers and Chemical Engineering, 161, pp. 107768 - 107768, http://dx.doi.org/10.1016/j.compchemeng.2022.107768
,2022, 'Electronic Structure Engineering of Single-Atom Ru Sites via Co–N4 Sites for Bifunctional pH-Universal Water Splitting', Advanced Materials, 34, pp. e2110103, http://dx.doi.org/10.1002/adma.202110103
,2022, 'Electroreduction of low concentration CO
2022, 'Flash-assisted doping graphene for ultrafast potassium transport', Nano Research, 15, pp. 4083 - 4090, http://dx.doi.org/10.1007/s12274-021-4023-6
,2022, 'Sea urchin-like NiMoO
2022, 'Interfacially confined preparation of copper Porphyrin-contained nanofilms towards High-performance Strain-Pressure monitoring', Journal of Colloid and Interface Science, 612, pp. 516 - 524, http://dx.doi.org/10.1016/j.jcis.2022.01.007
,2022, 'Self-Assembly of Amphiphilic BODIPY Derivatives on Micropatterned Ionic Liquid Surfaces for Fluorescent Films with Excellent Stability and Sensing Performance', ACS Applied Materials and Interfaces, 14, pp. 13962 - 13969, http://dx.doi.org/10.1021/acsami.2c01417
,2022, 'Atom probe specimen preparation methods for nanoparticles', Ultramicroscopy, 233, http://dx.doi.org/10.1016/j.ultramic.2021.113420
,