ORCID as entered in ROS

Select Publications
2019, 'The UVic Earth System Climate Model: Model Description, Climatology, and Applications to Past, Present and Future Climates', in Data, Models and Analysis, Routledge, pp. 169 - 236, http://dx.doi.org/10.4324/9781315170206-12
,2018, 'Impacts of 1.5ºC global warming on natural and human systems', in Masson-Delmotte V; Zhai P; Pörtner HO; Roberts D; Skea J; Shukla PR; Pirani A; Moufouma-Okia W; Péan C; Pidcock R; Connors S; Matthews JBR; Chen Y; Zhou X; Gomis MI; Lonnoy E; Maycock T; Tignor M; Waterfield T (ed.), Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, IPCC Secretariat, pp. 175 - 311, https://www.ipcc.ch/site/assets/uploads/sites/2/2019/02/SR15_Chapter3_Low_Res.pdf
,2009, 'Paleoceanography', in Encyclopedia of Earth Sciences Series, pp. 448 - 472, http://dx.doi.org/10.1007/978-1-4020-4411-3_167
,2008, 'Paleoceanography', in Gornitz V (ed.), Encyclopedia of Paleoclimatology and Ancient Environments, Kluwer Academic Publishers, pp. 690 - 696
,2007, 'Conclusion Reconstructing and Modeling Past Oceans', in , pp. 799 - 811, http://dx.doi.org/10.1016/S1572-5480(07)01025-1
,2007, 'Conclusion: Reconstructing and Modelling Past Oceans', in Hillaire-Marcel C; de Vernal A (ed.), Proxies in Late Cenozoic Paleoceanography, Volume 1 (Developments in Marine Geology), Elsevier Science, Amsterdam, The Netherlands, pp. 199 - 812
,2007, 'Mechanisms for an ~7-kyr climate and sea-level oscillation during marine isotope stage 3', in Schmittner A; Chiang JCH; Hemmings S (ed.), Ocean Circulation: Mechanisms and Impacts Past and future Changes of Meridional Overturning (Geophysical Monograph), Amer Geophysical Union, pp. 209 - 246
,2023, 'Early Eocene low orography and high methane enhance Arctic warming via polar stratospheric clouds', Nature Geoscience, 16, pp. 1027 - 1032, http://dx.doi.org/10.1038/s41561-023-01298-w
,2023, 'Impact of iron fertilisation on atmospheric CO2 during the last glaciation', Climate of the Past, 19, pp. 1559 - 1584, http://dx.doi.org/10.5194/cp-19-1559-2023
,2023, 'Can Polar Stratospheric Clouds Explain Arctic Amplification?', Journal of Climate, 36, pp. 2313 - 2332, http://dx.doi.org/10.1175/JCLI-D-22-0497.1
,2022, 'Plate tectonics controls ocean oxygen levels', Nature, 608, pp. 480 - 481, http://dx.doi.org/10.1038/d41586-022-02187-9
,2022, 'Antarctic sea ice over the past 130 000 years - Part 1: a review of what proxy records tell us', Climate of the Past, 18, pp. 1729 - 1756, http://dx.doi.org/10.5194/cp-18-1729-2022
,2022, 'ACCESS datasets for CMIP6: Methodology and idealised experiments', Journal of Southern Hemisphere Earth Systems Science, 72, pp. 93 - 116, http://dx.doi.org/10.1071/ES21031
,2022, 'Changes in atmospheric CO
2022, 'Evaluating seasonal sea-ice cover over the Southern Ocean at the Last Glacial Maximum', Climate of the Past, 18, pp. 845 - 862, http://dx.doi.org/10.5194/cp-18-845-2022
,2022, 'Marine carbon cycle response to a warmer Southern Ocean: The case of the last interglacial', Climate of the Past, 18, pp. 507 - 523, http://dx.doi.org/10.5194/cp-18-507-2022
,2021, 'Drivers of the evolution and amplitude of African Humid Periods', Communications Earth and Environment, 2, http://dx.doi.org/10.1038/s43247-021-00309-1
,2021, 'Magnitude of the 8.2 ka event freshwater forcing based on stable isotope modelling and comparison to future Greenland melting', Scientific Reports, 11, http://dx.doi.org/10.1038/s41598-021-84709-5
,2021, 'Explicit silicate cycling in the Kiel Marine Biogeochemistry Model version 3 (KMBM3) embedded in the UVic ESCM version 2.9', Geoscientific Model Development, 14, pp. 7255 - 7285, http://dx.doi.org/10.5194/gmd-14-7255-2021
,2021, 'Southern Ocean Ecosystem Response to Last Glacial Maximum Boundary Conditions', Paleoceanography and Paleoclimatology, 36, http://dx.doi.org/10.1029/2020PA004075
,2021, 'A multimodel investigation of atmospheric mechanisms for driving arctic amplification in warmer climates', Journal of Climate, 34, pp. 5723 - 5740, http://dx.doi.org/10.1175/JCLI-D-20-0354.1
,2021, 'Land-sea temperature contrasts at the Last Interglacial and their impact on the hydrological cycle', Climate of the Past, 17, pp. 869 - 885, http://dx.doi.org/10.5194/cp-17-869-2021
,2021, 'Projected Changes to Australian Marine Heatwaves', Geophysical Research Letters, 48, http://dx.doi.org/10.1029/2020GL091323
,2021, 'Carbon cycle dynamics during episodes of rapid climate change', Environmental Research Letters, 16, http://dx.doi.org/10.1088/1748-9326/abeade
,2021, 'Lower oceanic 13C during the last interglacial period compared to the Holocene', Climate of the Past, 17, pp. 507 - 528, http://dx.doi.org/10.5194/cp-17-507-2021
,2021, 'A multi-model CMIP6-PMIP4 study of Arctic sea ice at 127 ka: Sea ice data compilation and model differences', Climate of the Past, 17, pp. 37 - 62, http://dx.doi.org/10.5194/cp-17-37-2021
,2021, 'Large-scale features of Last Interglacial climate: Results from evaluating the lig127k simulations for the Coupled Model Intercomparison Project (CMIP6)-Paleoclimate Modeling Intercomparison Project (PMIP4)', Climate of the Past, 17, pp. 63 - 94, http://dx.doi.org/10.5194/cp-17-63-2021
,2021, 'Connections of climate change and variability to large and extreme forest fires in southeast Australia', Communications Earth and Environment, 2, http://dx.doi.org/10.1038/s43247-020-00065-8
,2021, 'Drivers of the evolution and amplitude of African Humid Periods', , http://dx.doi.org/10.21203/rs.3.rs-665330/v1
,2020, 'Weak Southern Hemispheric monsoons during the Last Interglacial period', , http://dx.doi.org/10.5194/cp-2020-149
,2020, 'Freshwater forcing control on early-Holocene South American monsoon', Quaternary Science Reviews, 245, http://dx.doi.org/10.1016/j.quascirev.2020.106498
,2020, 'Indian Ocean warming modulates global atmospheric circulation trends', Climate Dynamics, 55, pp. 2053 - 2073, http://dx.doi.org/10.1007/s00382-020-05369-1
,2020, 'Evaluation of the University of Victoria Earth System Climate Model version 2.10 (UVic ESCM 2.10)', Geoscientific Model Development, 13, pp. 4183 - 4204, http://dx.doi.org/10.5194/gmd-13-4183-2020
,2020, 'Modelling the impact of biogenic particle flux intensity and composition on sedimentary Pa/Th', Quaternary Science Reviews, 240, http://dx.doi.org/10.1016/j.quascirev.2020.106394
,2020, 'Lower oceanic 𝛿<sup>13</sup>C during the Last Interglacial compared to the Holocene', , http://dx.doi.org/10.5194/cp-2020-73
,2020, 'Paleoceanography lessons for a changing world', Oceanography, 33, pp. 13 - 15, http://dx.doi.org/10.5670/oceanog.2020.226
,2019, 'Assessing the Spatial Origin of Meltwater Pulse 1A Using Oxygen-Isotope Fingerprinting', Paleoceanography and Paleoclimatology, 34, pp. 2031 - 2046, http://dx.doi.org/10.1029/2019PA003599
,2019, 'Mechanisms of millennial-scale atmospheric CO
2019, 'Evaluating the Extent of North Atlantic Deep Water and the Mean Atlantic δ13C From Statistical Reconstructions', Paleoceanography and Paleoclimatology, 34, pp. 1022 - 1036, http://dx.doi.org/10.1029/2019PA003589
,2019, 'Phytoplankton calcifiers control nitrate cycling and the pace of transition in warming icehouse and cooling greenhouse climates', Biogeosciences, 16, pp. 1019 - 1034, http://dx.doi.org/10.5194/bg-16-1019-2019
,2018, 'Asymmetric dynamical ocean responses in warming icehouse and cooling greenhouse climates', Environmental Research Letters, 13, http://dx.doi.org/10.1088/1748-9326/aaedc3
,2018, 'Southern Hemisphere westerlies as a driver of the early deglacial atmospheric CO
2018, 'Erratum to: Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond (Nature Geoscience, (2018), 11, 7, (474-485), 10.1038/s41561-018-0146-0)', Nature Geoscience, 11, pp. 615, http://dx.doi.org/10.1038/s41561-018-0196-3
,2018, 'Future Projections of Antarctic Ice Shelf Melting Based on CMIP5 Scenarios', Journal of Climate, 31, pp. 5243 - 5261, http://dx.doi.org/10.1175/JCLI-D-17-0854.1
,2018, 'Palaeoclimate constraints on the impact of 2 °c anthropogenic warming and beyond', Nature Geoscience, 11, pp. 474 - 485, http://dx.doi.org/10.1038/s41561-018-0146-0
,2018, 'Intercomparison of Antarctic ice-shelf, ocean, and sea-ice interactions simulated by MetROMS-iceshelf and FESOM 1.4', Geoscientific Model Development, 11, pp. 1257 - 1292, http://dx.doi.org/10.5194/gmd-11-1257-2018
,2018, 'New data-availability procedures echo PAGES’ long-standing commitment', Past Global Change Magazine, 26, pp. 48 - 48, http://dx.doi.org/10.22498/pages.26.2.48
,2017, 'Primary production sensitivity to phytoplankton light attenuation parameter increases with transient forcing', Biogeosciences, 14, pp. 4767 - 4780, http://dx.doi.org/10.5194/bg-14-4767-2017
,2017, 'Palaeoclimate: Volcanism caused ancient global warming', Nature, 548, pp. 531 - 533, http://dx.doi.org/10.1038/548531a
,2017, 'Spurious sea ice formation caused by oscillatory ocean tracer advection schemes', Ocean Modelling, 116, pp. 108 - 117, http://dx.doi.org/10.1016/j.ocemod.2017.06.010
,