Select Publications
Journal articles
2024, 'East Antarctic warming forced by ice loss during the Last Interglacial', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-45501-x
,2024, 'Last Interglacial subsurface warming on the Antarctic shelf triggered by reduced deep-ocean convection', Communications Earth and Environment, 5, http://dx.doi.org/10.1038/s43247-024-01383-x
,2024, 'Low latitude mesospheric clouds in a warmer climate', Atmospheric Science Letters, 25, http://dx.doi.org/10.1002/asl.1209
,2024, 'Atmospheric Δ14C in the northern and southern hemispheres over the past two millennia: Role of production rate, southern hemisphere westerly winds and ocean circulation changes', Quaternary Science Reviews, 326, http://dx.doi.org/10.1016/j.quascirev.2024.108502
,2024, 'Transient Response of Southern Ocean Ecosystems During Heinrich Stadials', Paleoceanography and Paleoclimatology, 39, http://dx.doi.org/10.1029/2023PA004754
,2023, 'Early Eocene low orography and high methane enhance Arctic warming via polar stratospheric clouds', Nature Geoscience, 16, pp. 1027 - 1032, http://dx.doi.org/10.1038/s41561-023-01298-w
,2023, 'Impact of iron fertilisation on atmospheric CO2 during the last glaciation', Climate of the Past, 19, pp. 1559 - 1584, http://dx.doi.org/10.5194/cp-19-1559-2023
,2023, 'Can Polar Stratospheric Clouds Explain Arctic Amplification?', Journal of Climate, 36, pp. 2313 - 2332, http://dx.doi.org/10.1175/JCLI-D-22-0497.1
,2023, 'Acute air pollution and temperature exposure as independent and joint triggers of spontaneous preterm birth in New South Wales, Australia: a time-to-event analysis', Frontiers in Public Health, 11, http://dx.doi.org/10.3389/fpubh.2023.1220797
,2022, 'Plate tectonics controls ocean oxygen levels', Nature, 608, pp. 480 - 481, http://dx.doi.org/10.1038/d41586-022-02187-9
,2022, 'Antarctic sea ice over the past 130 000 years - Part 1: a review of what proxy records tell us', Climate of the Past, 18, pp. 1729 - 1756, http://dx.doi.org/10.5194/cp-18-1729-2022
,2022, 'ACCESS datasets for CMIP6: Methodology and idealised experiments', Journal of Southern Hemisphere Earth Systems Science, 72, pp. 93 - 116, http://dx.doi.org/10.1071/ES21031
,2022, 'Changes in atmospheric CO
2022, 'Evaluating seasonal sea-ice cover over the Southern Ocean at the Last Glacial Maximum', Climate of the Past, 18, pp. 845 - 862, http://dx.doi.org/10.5194/cp-18-845-2022
,2022, 'Marine carbon cycle response to a warmer Southern Ocean: The case of the last interglacial', Climate of the Past, 18, pp. 507 - 523, http://dx.doi.org/10.5194/cp-18-507-2022
,2021, 'Drivers of the evolution and amplitude of African Humid Periods', Communications Earth and Environment, 2, pp. 237, http://dx.doi.org/10.1038/s43247-021-00309-1
,2021, 'Magnitude of the 8.2 ka event freshwater forcing based on stable isotope modelling and comparison to future Greenland melting', Scientific Reports, 11, http://dx.doi.org/10.1038/s41598-021-84709-5
,2021, 'Explicit silicate cycling in the Kiel Marine Biogeochemistry Model version 3 (KMBM3) embedded in the UVic ESCM version 2.9', Geoscientific Model Development, 14, pp. 7255 - 7285, http://dx.doi.org/10.5194/gmd-14-7255-2021
,2021, 'Southern Ocean Ecosystem Response to Last Glacial Maximum Boundary Conditions', Paleoceanography and Paleoclimatology, 36, http://dx.doi.org/10.1029/2020PA004075
,2021, 'A multimodel investigation of atmospheric mechanisms for driving arctic amplification in warmer climates', Journal of Climate, 34, pp. 5723 - 5740, http://dx.doi.org/10.1175/JCLI-D-20-0354.1
,2021, 'Land-sea temperature contrasts at the Last Interglacial and their impact on the hydrological cycle', Climate of the Past, 17, pp. 869 - 885, http://dx.doi.org/10.5194/cp-17-869-2021
,2021, 'Projected Changes to Australian Marine Heatwaves', Geophysical Research Letters, 48, http://dx.doi.org/10.1029/2020GL091323
,2021, 'Carbon cycle dynamics during episodes of rapid climate change', Environmental Research Letters, 16, http://dx.doi.org/10.1088/1748-9326/abeade
,2021, 'Influence of Southern Ocean dynamics on Antarctic temperatures and on the global carbon cycle over the past two millennia.', , http://dx.doi.org/10.5194/egusphere-egu21-1180
,2021, 'Lower oceanic 13C during the last interglacial period compared to the Holocene', Climate of the Past, 17, pp. 507 - 528, http://dx.doi.org/10.5194/cp-17-507-2021
,2021, 'A multi-model CMIP6-PMIP4 study of Arctic sea ice at 127 ka: Sea ice data compilation and model differences', Climate of the Past, 17, pp. 37 - 62, http://dx.doi.org/10.5194/cp-17-37-2021
,2021, 'Large-scale features of Last Interglacial climate: Results from evaluating the lig127k simulations for the Coupled Model Intercomparison Project (CMIP6)-Paleoclimate Modeling Intercomparison Project (PMIP4)', Climate of the Past, 17, pp. 63 - 94, http://dx.doi.org/10.5194/cp-17-63-2021
,2021, 'Connections of climate change and variability to large and extreme forest fires in southeast Australia', Communications Earth and Environment, 2, http://dx.doi.org/10.1038/s43247-020-00065-8
,2021, 'Drivers of the evolution and amplitude of African Humid Periods', , http://dx.doi.org/10.21203/rs.3.rs-665330/v1
,2020, 'Weak Southern Hemispheric monsoons during the Last Interglacial period', , http://dx.doi.org/10.5194/cp-2020-149
,2020, 'Freshwater forcing control on early-Holocene South American monsoon', Quaternary Science Reviews, 245, pp. 106498, http://dx.doi.org/10.1016/j.quascirev.2020.106498
,2020, 'Indian Ocean warming modulates global atmospheric circulation trends', Climate Dynamics, 55, pp. 2053 - 2073, http://dx.doi.org/10.1007/s00382-020-05369-1
,2020, 'Evaluation of the University of Victoria Earth System Climate Model version 2.10 (UVic ESCM 2.10)', Geoscientific Model Development, 13, pp. 4183 - 4204, http://dx.doi.org/10.5194/gmd-13-4183-2020
,2020, 'Modelling the impact of biogenic particle flux intensity and composition on sedimentary Pa/Th', Quaternary Science Reviews, 240, pp. 106394, http://dx.doi.org/10.1016/j.quascirev.2020.106394
,2020, 'Lower oceanic 𝛿<sup>13</sup>C during the Last Interglacial compared to the Holocene', , http://dx.doi.org/10.5194/cp-2020-73
,2020, 'Evaluation of the University of Victoria Earth System Climate Model version 2.10 (UVic ESCM 2.10)', , http://dx.doi.org/10.5194/egusphere-egu2020-5583
,2020, 'Modelled response of marine ecosystems to Last Glacial Maximum forcing', , http://dx.doi.org/10.5194/egusphere-egu2020-1370
,2020, 'Paleoceanography lessons for a changing world', Oceanography, 33, pp. 13 - 15, http://dx.doi.org/10.5670/oceanog.2020.226
,2019, 'Assessing the Spatial Origin of Meltwater Pulse 1A Using Oxygen-Isotope Fingerprinting', Paleoceanography and Paleoclimatology, 34, pp. 2031 - 2046, http://dx.doi.org/10.1029/2019PA003599
,2019, 'Mechanisms of millennial-scale atmospheric CO
2019, 'Evaluating the Extent of North Atlantic Deep Water and the Mean Atlantic δ13C From Statistical Reconstructions', Paleoceanography and Paleoclimatology, 34, pp. 1022 - 1036, http://dx.doi.org/10.1029/2019PA003589
,2019, 'Phytoplankton calcifiers control nitrate cycling and the pace of transition in warming icehouse and cooling greenhouse climates', Biogeosciences, 16, pp. 1019 - 1034, http://dx.doi.org/10.5194/bg-16-1019-2019
,2018, 'Asymmetric dynamical ocean responses in warming icehouse and cooling greenhouse climates', Environmental Research Letters, 13, pp. 125011, http://dx.doi.org/10.1088/1748-9326/aaedc3
,2018, 'Southern Hemisphere westerlies as a driver of the early deglacial atmospheric CO
2018, 'Erratum to: Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond (Nature Geoscience, (2018), 11, 7, (474-485), 10.1038/s41561-018-0146-0)', Nature Geoscience, 11, pp. 615, http://dx.doi.org/10.1038/s41561-018-0196-3
,2018, 'Future Projections of Antarctic Ice Shelf Melting Based on CMIP5 Scenarios', Journal of Climate, 31, pp. 5243 - 5261, http://dx.doi.org/10.1175/JCLI-D-17-0854.1
,2018, 'Palaeoclimate constraints on the impact of 2 °c anthropogenic warming and beyond', Nature Geoscience, 11, pp. 474 - 485, http://dx.doi.org/10.1038/s41561-018-0146-0
,2018, 'Intercomparison of Antarctic ice-shelf, ocean, and sea-ice interactions simulated by MetROMS-iceshelf and FESOM 1.4', Geoscientific Model Development, 11, pp. 1257 - 1292, http://dx.doi.org/10.5194/gmd-11-1257-2018
,2018, 'New data-availability procedures echo PAGES’ long-standing commitment', Past Global Change Magazine, 26, pp. 48 - 48, http://dx.doi.org/10.22498/pages.26.2.48
,2017, 'Primary production sensitivity to phytoplankton light attenuation parameter increases with transient forcing', Biogeosciences, 14, pp. 4767 - 4780, http://dx.doi.org/10.5194/bg-14-4767-2017
,