Select Publications
Book Chapters
2011, 'Preclinical Evaluation', in Saha V; Kearns P (ed.), New Agents for the Treatment of Acute Lymphoblastic Leukemia, Springer, New York, Dordrecht, Heidelberg, London, pp. 39 - 60, http://dx.doi.org/10.1007/978-1-4419-8459-3_3
,2011, 'Strategies for New Agent Development and Clinical Trial Considerations', in Reaman GH; Smith FO (ed.), Childhood Leukemia, Springer-Verlag, Berlin, pp. 215 - 241
,2005, 'Immunodetecting members of the Bcl-2 family of proteins', in Blumenthal RD (ed.), Methods in Molecular Medicine, vol III: Chemosensitivity: Vol 2, Humana Press, Totowa NJ, pp. 83 - 96
,2005, 'Immunodetecting members of the Bcl-2 family of proteins.', in Blumenthal RD (ed.), Methods in Molecular Medicine, Vol2: In Vivo Models, Imaging, and Molecular Regulators, pp. 83 - 96
,2005, 'Preclinical Testing of Antileukemic Drugs Using an In Vivo Model of Systemic Disease', in Blumenthal RD (ed.), Methods in Molecular Medicine, vol III: Chemosensitivity: Vol 2, Humana Press, Totowa, NJ, pp. 323 - 334, http://dx.doi.org/10.1385/1-59259-889-7:323
,2005, 'Preclinical testing of antileukemic drugs using an in vivo model of systemic disease', in Blumenthal ED (ed.), Methods in Molecular Medicine: Vol 2: In Vivo Models, Imaging and Molecular Regulators, pp. 323 - 334
,1994, 'Determinants of etoposide cytotoxicity in vitro', in Valeriote FA; Corbett TH; Baker LH (ed.), Anticancer Drug Discovery and Development, Kluwer Academic Publishers, Boston, pp. 347 - 363
,1990, 'The differential expression of resistance to etoposide, vincristine, Adriamycin and Novantrone in human tumour cell lines in vitro: "typical" and "atypical" multidrug resistance', in Osieka R; Seeber S; Enghofer E (ed.), Chemotherapieresistenz, De Gruyter, pp. 41 - 50, http://dx.doi.org/10.1515/9783110857689-005
,1989, 'Investigations of antitumour drug resistance using human tumour cell lines in vitro', in Ghione M; Ramsa L (ed.), Resistance to Antitumor Agents, Harwood Academic Press, London, pp. 62 - 71
,1989, 'Pathways of resistance to topoisomerase II inhibitors', in Tapiero H; Robert J; Lampidis TJ (ed.), Anticancer Drugs, Colloque INSERM/John Libbey Eurotext Ltd, pp. 93 - 101
,1989, 'Tumor cell resistance to etoposide (VP-16) - A review', in Resistance to Antineoplastic Drugs, CRC Press, Boca Raton, Florida, pp. 185 - 205
,Journal articles
2024, 'TOPORS E3 ligase mediates resistance to hypomethylating agent cytotoxicity in acute myeloid leukemia cells', Nature Communications, 15, pp. 7360, http://dx.doi.org/10.1038/s41467-024-51646-6
,2024, 'The third generation AKR1C3-activated prodrug, ACHM-025, eradicates disease in preclinical models of aggressive T-cell acute lymphoblastic leukemia.', Blood Cancer J, 14, pp. 192, http://dx.doi.org/10.1038/s41408-024-01180-x
,2024, 'ETV6::ACSL6 translocation-driven super-enhancer activation leads to eosinophilia in acute lymphoblastic leukemia through IL-3 overexpression', Haematologica, 109, pp. 2445 - 2446, http://dx.doi.org/10.3324/haematol.2023.284121
,2024, 'Precision-guided treatment in high-risk pediatric cancers', Nature Medicine, 30, pp. 1913 - 1922, http://dx.doi.org/10.1038/s41591-024-03044-0
,2024, 'FDA-approved disulfiram as a novel treatment for aggressive leukemia', Journal of Molecular Medicine, 102, pp. 507 - 519, http://dx.doi.org/10.1007/s00109-023-02414-4
,2024, 'In vivo activity of the second-generation proteasome inhibitor ixazomib against pediatric T-cell acute lymphoblastic leukemia xenografts', Experimental Hematology, 132, pp. 104176, http://dx.doi.org/10.1016/j.exphem.2024.104176
,2024, 'An antibody fragment-decorated liposomal conjugate targets Philadelphia-like acute lymphoblastic leukemia', International Journal of Biological Macromolecules, 254, pp. 127596, http://dx.doi.org/10.1016/j.ijbiomac.2023.127596
,2023, 'Small zinc doped iron oxide tracers for magnetic particle imaging', Journal of Magnetism and Magnetic Materials, 587, http://dx.doi.org/10.1016/j.jmmm.2023.171304
,2023, 'High-Throughput Drug Screening of Primary Tumor Cells Identifies Therapeutic Strategies for Treating Children with High-Risk Cancer', Cancer Research, 83, pp. 2716 - 2732, http://dx.doi.org/10.1158/0008-5472.CAN-22-3702
,2023, 'In vivo activity of the dual PI3Kδ and PI3Kγ inhibitor duvelisib against pediatric acute lymphoblastic leukemia xenografts', Pediatric Blood and Cancer, 70, pp. e30398, http://dx.doi.org/10.1002/pbc.30398
,2023, 'Delivery of PEGylated liposomal doxorubicin by bispecific antibodies improves treatment in models of high-risk childhood leukemia', Science translational medicine, 15, pp. eabm1262 - eabm1262, http://dx.doi.org/10.1126/scitranslmed.abm1262
,2023, 'STAT5 activation promotes progression and chemotherapy-resistance in early T-cell precursor acute lymphoblastic leukemia', Blood, 142, http://dx.doi.org/10.1182/blood.2022016322
,2023, 'Blockade of ROS production inhibits oncogenic signaling in acute myeloid leukemia and amplifies response to precision therapies', Science Signaling, 16, pp. 1 - 18, http://dx.doi.org/10.1126/scisignal.abp9586
,2023, 'In vivo activity of the dual SYK/FLT3 inhibitor TAK-659 against pediatric acute lymphoblastic leukemia xenografts', Pediatric Blood and Cancer, 70, pp. e30503, http://dx.doi.org/10.1002/pbc.30503
,2023, 'The tip of the iceberg—The roles of long noncoding RNAs in acute myeloid leukemia', Wiley Interdisciplinary Reviews: RNA, 14, pp. e1796, http://dx.doi.org/10.1002/wrna.1796
,2023, 'PLK1 as a cooperating partner for BCL2-mediated antiapoptotic program in leukemia', Blood Cancer Journal, 13, pp. 139 - 139, http://dx.doi.org/10.1038/s41408-023-00914-7
,2022, 'The Promise of Single-cell Technology in Providing New Insights into the Molecular Heterogeneity and Management of Acute Lymphoblastic Leukemia', HemaSphere, 6, pp. E734, http://dx.doi.org/10.1097/HS9.0000000000000734
,2022, 'The Combination of Curaxin CBL0137 and Histone Deacetylase Inhibitor Panobinostat Delays KMT2A-Rearranged Leukemia Progression', Frontiers in Oncology, 12, pp. 863329, http://dx.doi.org/10.3389/fonc.2022.863329
,2022, 'Circulating Tumor DNA in Pediatric Cancer', Frontiers in Molecular Biosciences, 9, pp. 885597, http://dx.doi.org/10.3389/fmolb.2022.885597
,2022, 'In vitro and in vivo drug screens of tumor cells identify novel therapies for high-risk child cancer', EMBO Molecular Medicine, 14, pp. emmm202114608, http://dx.doi.org/10.15252/emmm.202114608
,2022, 'Exploring the Metabolic Landscape of AML: From Haematopoietic Stem Cells to Myeloblasts and Leukaemic Stem Cells', Frontiers in Oncology, 12, pp. 807266, http://dx.doi.org/10.3389/fonc.2022.807266
,2022, 'Preclinical efficacy of azacitidine and venetoclax for infant KMT2A-rearranged acute lymphoblastic leukemia reveals a new therapeutic strategy', Leukemia, 37, pp. 1 - 11, http://dx.doi.org/10.1038/s41375-022-01746-3
,2021, 'Author Correction: Small molecule inhibition of Dynamin-dependent endocytosis targets multiple niche signals and impairs leukemia stem cells (Nature Communications, (2020), 11, 1, (6211), 10.1038/s41467-020-20091-6)', Nature Communications, 12, pp. 1288, http://dx.doi.org/10.1038/s41467-021-21688-1
,2021, 'Oncogenic cooperation between TCF7-SPI1 and NRAS(G12D) requires β-catenin activity to drive T-cell acute lymphoblastic leukemia', Nature Communications, 12, pp. 4164, http://dx.doi.org/10.1038/s41467-021-24442-9
,2021, 'A recombinant antibody fragment directed to the thymic stromal lymphopoietin receptor (CRLF2) efficiently targets pediatric Philadelphia chromosome-like acute lymphoblastic leukemia', International Journal of Biological Macromolecules, 190, pp. 214 - 223, http://dx.doi.org/10.1016/j.ijbiomac.2021.08.194
,2021, 'Combination efficacy of ruxolitinib with standard-of-care drugs in CRLF2-rearranged Ph-like acute lymphoblastic leukemia', Leukemia, 35, pp. 3101 - 3112, http://dx.doi.org/10.1038/s41375-021-01248-8
,2021, 'Development of siRNA-loaded lipid nanoparticles targeting long non-coding RNA LINC01257 as a novel and safe therapeutic approach for t(8;21) pediatric acute myeloid leukemia', Pharmaceutics, 13, pp. 1681, http://dx.doi.org/10.3390/pharmaceutics13101681
,2021, 'PRC2 Inhibitors Overcome Glucocorticoid Resistance Driven by NSD2 Mutation in Pediatric Acute Lymphoblastic Leukemia.', Cancer Discov, 12, pp. 1 - 46, http://dx.doi.org/10.1158/2159-8290.CD-20-1771
,2021, 'Exploiting the reactive oxygen species imbalance in high-risk paediatric acute lymphoblastic leukaemia through auranofin', British Journal of Cancer, 125, pp. 55 - 64, http://dx.doi.org/10.1038/s41416-021-01332-x
,2021, 'Quantitative phosphoproteomics uncovers synergy between DNA-PK and FLT3 inhibitors in acute myeloid leukaemia', Leukemia, 35, pp. 1782 - 1787, http://dx.doi.org/10.1038/s41375-020-01050-y
,2021, 'The spleen as a sanctuary site for residual leukemic cells following ABT-199 monotherapy in ETP-ALL.', Blood Advances, 5, pp. 1963 - 1976, http://dx.doi.org/10.1182/bloodadvances.2021004177
,2021, 'RUNX2 regulates leukemic cell metabolism and chemotaxis in high-risk T cell acute lymphoblastic leukemia', Journal of Clinical Investigation, 131, http://dx.doi.org/10.1172/JCI141566
,2021, 'The important role of routine cytopathology in pediatric precision oncology', Cancer Cytopathology, 129, pp. 805 - 818, http://dx.doi.org/10.1002/cncy.22448
,2020, 'Small molecule inhibition of Dynamin-dependent endocytosis targets multiple niche signals and impairs leukemia stem cells', Nature Communications, 11, pp. 6211, http://dx.doi.org/10.1038/s41467-020-20091-6
,2020, 'Targeting TSLP-induced tyrosine kinase signaling pathways in CRLF2-Rearranged Ph-like ALL', Molecular Cancer Research, 18, pp. 1767 - 1776, http://dx.doi.org/10.1158/1541-7786.MCR-19-1098
,2020, 'Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer', Nature Medicine, 26, pp. 1742 - 1753, http://dx.doi.org/10.1038/s41591-020-1072-4
,2020, 'Examining treatment responses of diagnostic marrow in murine xenografts to predict relapse in children with acute lymphoblastic leukaemia', British Journal of Cancer, 123, pp. 742 - 751, http://dx.doi.org/10.1038/s41416-020-0933-4
,2020, 'PIM kinase inhibitors block the growth of primary T-cell acute lymphoblastic leukemia: Resistance pathways identified by network modeling analysis', Molecular Cancer Therapeutics, 19, pp. 1809 - 1821, http://dx.doi.org/10.1158/1535-7163.MCT-20-0160
,2020, 'OT-82, a novel anticancer drug candidate that targets the strong dependence of hematological malignancies on NAD biosynthesis', Leukemia, 34, pp. 1828 - 1839, http://dx.doi.org/10.1038/s41375-019-0692-5
,