Select Publications
Book Chapters
2009, 'Measuring the Charge and Spin States of Electrons on Individual Dopant Atoms in Silicon', in Electron Spin Resonance and Related Phenomena in Low-Dimensional Structures, Springer, Germany, pp. 169 - 182, http://dx.doi.org/10.1007/978-3-540-79365-6_9
,1995, 'Conductance in Quantum Boxes: Interference and Single Electron Effects', in NATO ASI Series, Springer US, pp. 201 - 216, http://dx.doi.org/10.1007/978-1-4615-1967-6_10
,Journal articles
2024, 'A singlet-triplet hole-spin qubit in MOS silicon', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-51902-9
,2024, 'Bounds to electron spin qubit variability for scalable CMOS architectures', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-48557-x
,2024, 'Entangling gates on degenerate spin qubits dressed by a global field', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-52010-4
,2024, 'Navigating the 16-dimensional Hilbert space of a high-spin donor qudit with electric and magnetic fields', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-45368-y
,2024, 'Tomography of entangling two-qubit logic operations in exchange-coupled donor electron spin qubits', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-52795-4
,2024, 'Impact of electrostatic crosstalk on spin qubits in dense CMOS quantum dot arrays', Physical Review B, 110, http://dx.doi.org/10.1103/PhysRevB.110.125414
,2024, 'High-fidelity spin qubit operation and algorithmic initialization above 1 K', Nature, 627, pp. 772 - 777, http://dx.doi.org/10.1038/s41586-024-07160-2
,2024, 'Silicon spin qubit noise characterization using real-time feedback protocols and wavelet analysis', Applied Physics Letters, 124, http://dx.doi.org/10.1063/5.0179958
,2024, 'Improved Placement Precision of Donor Spin Qubits in Silicon using Molecule Ion Implantation', Advanced Quantum Technologies, 7, http://dx.doi.org/10.1002/qute.202300316
,2024, 'Electrical operation of hole spin qubits in planar MOS silicon quantum dots', Physical Review B, 109, http://dx.doi.org/10.1103/PhysRevB.109.075427
,2024, 'Assessment of the errors of high-fidelity two-qubit gates in silicon quantum dots', Nature Physics, http://dx.doi.org/10.1038/s41567-024-02614-w
,2024, 'Improved Single-Shot Qubit Readout Using Twin rf-SET Charge Correlations', PRX Quantum, 5, http://dx.doi.org/10.1103/PRXQuantum.5.010301
,2024, 'Silicon-charge-pump operation limit above and below liquid-helium temperature', Physical Review Applied, 21, http://dx.doi.org/10.1103/PhysRevApplied.21.014040
,2023, 'Electrical operation of planar Ge hole spin qubits in an in-plane magnetic field', Physical Review B, 108, http://dx.doi.org/10.1103/PhysRevB.108.245301
,2023, 'Path-integral simulation of exchange interactions in CMOS spin qubits', Physical Review B, 108, http://dx.doi.org/10.1103/PhysRevB.108.155413
,2023, 'Accessing the full capabilities of filter functions: Tool for detailed noise and quantum control susceptibility analysis', Physical Review A, 108, http://dx.doi.org/10.1103/PhysRevA.108.012426
,2023, 'Jellybean Quantum Dots in Silicon for Qubit Coupling and On-Chip Quantum Chemistry', Advanced Materials, 35, http://dx.doi.org/10.1002/adma.202208557
,2023, 'Gate-Based Spin Readout of Hole Quantum Dots with Site-Dependent g -Factors', Physical Review Applied, 19, http://dx.doi.org/10.1103/PhysRevApplied.19.044039
,2023, 'Combining n-MOS Charge Sensing with p-MOS Silicon Hole Double Quantum Dots in a CMOS platform', Nano Letters, 23, pp. 1261 - 1266, http://dx.doi.org/10.1021/acs.nanolett.2c04417
,2023, 'Control of dephasing in spin qubits during coherent transport in silicon', Physical Review B, 107, http://dx.doi.org/10.1103/PhysRevB.107.085427
,2023, 'An electrically driven single-atom “flip-flop” qubit', Science Advances, 9, http://dx.doi.org/10.1126/sciadv.add9408
,2023, 'On-demand electrical control of spin qubits', Nature Nanotechnology, 18, pp. 131 - 136, http://dx.doi.org/10.1038/s41565-022-01280-4
,2022, 'Coherent control of electron spin qubits in silicon using a global field', npj Quantum Information, 8, http://dx.doi.org/10.1038/s41534-022-00645-w
,2022, 'Beating the Thermal Limit of Qubit Initialization with a Bayesian Maxwell's Demon', Physical Review X, 12, http://dx.doi.org/10.1103/PhysRevX.12.041008
,2022, 'Implementation of an advanced dressing protocol for global qubit control in silicon', Applied Physics Reviews, 9, http://dx.doi.org/10.1063/5.0096467
,2022, 'Fast Bayesian Tomography of a Two-Qubit Gate Set in Silicon', Physical Review Applied, 17, http://dx.doi.org/10.1103/PhysRevApplied.17.024068
,2022, 'Precision tomography of a three-qubit donor quantum processor in silicon', Nature, 601, pp. 348 - 353, http://dx.doi.org/10.1038/s41586-021-04292-7
,2022, 'Development of an Undergraduate Quantum Engineering Degree', IEEE Transactions on Quantum Engineering, 3, http://dx.doi.org/10.1109/TQE.2022.3157338
,2022, 'Materials for Silicon Quantum Dots and their Impact on Electron Spin Qubits', Advanced Functional Materials, 32, http://dx.doi.org/10.1002/adfm.202105488
,2022, 'The Australian National Fabrication Facility: Micro/nanotechnologies from Concept to Translation to End Users', Advanced Functional Materials, 32, http://dx.doi.org/10.1002/adfm.202101995
,2021, 'Electrical control of the g tensor of the first hole in a silicon MOS quantum dot', Physical Review B, 104, http://dx.doi.org/10.1103/PhysRevB.104.235303
,2021, 'Quantum computation protocol for dressed spins in a global field', Physical Review B, 104, http://dx.doi.org/10.1103/PhysRevB.104.235411
,2021, 'Bell-state tomography in a silicon many-electron artificial molecule', Nature Communications, 12, http://dx.doi.org/10.1038/s41467-021-23437-w
,2021, 'Coherent spin qubit transport in silicon', Nature Communications, 12, pp. 4114, http://dx.doi.org/10.1038/s41467-021-24371-7
,2021, 'Conditional quantum operation of two exchange-coupled single-donor spin qubits in a MOS-compatible silicon device', Nature Communications, 12, pp. 181, http://dx.doi.org/10.1038/s41467-020-20424-5
,2021, 'Pulse engineering of a global field for robust and universal quantum computation', Physical Review A, 104, http://dx.doi.org/10.1103/PhysRevA.104.062415
,2021, 'Scaling silicon-based quantum computing using CMOS technology', Nature Electronics, 4, pp. 872 - 884, http://dx.doi.org/10.1038/s41928-021-00681-y
,2021, 'Single-electron spin resonance in a nanoelectronic device using a global field', Science Advances, 7, http://dx.doi.org/10.1126/sciadv.abg9158
,2021, 'A High-Sensitivity Charge Sensor for Silicon Qubits above 1 K', Nano Letters, 21, pp. 6328 - 6335, http://dx.doi.org/10.1021/acs.nanolett.1c01003
,2021, 'Precision tomography of a three-qubit donor quantum processor in silicon', Nature, 601, pp. 348, http://dx.doi.org/10.1038/s41586-021-04292-7
,2021, 'Roadmap on quantum nanotechnologies', Nanotechnology, 32, http://dx.doi.org/10.1088/1361-6528/abb333
,2021, 'Exchange Coupling in a Linear Chain of Three Quantum-Dot Spin Qubits in Silicon', Nano Letters, 21, pp. 1517 - 1522, http://dx.doi.org/10.1021/acs.nanolett.0c04771
,2021, 'Pauli Blockade in Silicon Quantum Dots with Spin-Orbit Control', PRX Quantum, 2, http://dx.doi.org/10.1103/PRXQuantum.2.010303
,2020, 'Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot', Nature Communications, 11, http://dx.doi.org/10.1038/s41467-019-14053-w
,2020, 'Single-electron operation of a silicon-CMOS 2 × 2 quantum dot array with integrated charge sensing', Nano Letters, 20, pp. 7882 - 7888, http://dx.doi.org/10.1021/acs.nanolett.0c02397
,2020, 'Controllable freezing of the nuclear spin bath in a single-atom spin qubit', Science Advances, 6, http://dx.doi.org/10.1126/sciadv.aba3442
,2020, 'Operation of a silicon quantum processor unit cell above one kelvin', Nature, 580, pp. 350 - 354, http://dx.doi.org/10.1038/s41586-020-2171-6
,2020, 'Coherent electrical control of a single high-spin nucleus in silicon', Nature, 579, pp. 205 - 209, http://dx.doi.org/10.1038/s41586-020-2057-7
,