ORCID as entered in ROS
![orcid_icon](/themes/resgate8/images/icons/ORCIDiD_icon24x24.png)
Select Publications
2025, 'Roadmap on Atomic-scale Semiconductor Devices', Nano Futures, http://dx.doi.org/10.1088/2399-1984/ada901
,2024, 'Nonlocality activation in a photonic quantum network', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-47354-w
,2024, 'Fast Thermodynamic Study on a Silicon Nanotransistor at Cryogenic Temperatures', Nano Letters, 24, pp. 8859 - 8865, http://dx.doi.org/10.1021/acs.nanolett.4c01424
,2023, 'A solid-state quantum microscope for wavefunction control of an atom-based quantum dot device in silicon', Nature Electronics, 6, pp. 409 - 416, http://dx.doi.org/10.1038/s41928-023-00979-z
,2023, 'Photoionisation detection of a single Er3+ ion with sub-100-ns time resolution', National Science Review, 11, http://dx.doi.org/10.1093/nsr/nwad134
,2023, 'Observing Er3+ Sites in Si with an in Situ Single-Photon Detector', Physical Review Applied, 19, http://dx.doi.org/10.1103/PhysRevApplied.19.014037
,2022, 'Quasiparticle excitations in a one-dimensional interacting topological insulator: Application for dopant-based quantum simulation', Physical Review B, 106, http://dx.doi.org/10.1103/PhysRevB.106.195408
,2022, 'Certified random-number generation from quantum steering', Physical Review A, 106, http://dx.doi.org/10.1103/PhysRevA.106.L050401
,2022, 'Spectral Broadening of a Single Er3+ Ion in a Si Nanotransistor', Physical Review Applied, 18, http://dx.doi.org/10.1103/PhysRevApplied.18.034018
,2022, 'Zeeman and hyperfine interactions of a single Er 3+ 167 ion in Si', Physical Review B, 105, http://dx.doi.org/10.1103/PhysRevB.105.235306
,2022, 'Valley population of donor states in highly strained silicon', MATERIALS FOR QUANTUM TECHNOLOGY, 2, http://dx.doi.org/10.1088/2633-4356/ac5d1d
,2022, 'Flopping-Mode Electric Dipole Spin Resonance in Phosphorus Donor Qubits in Silicon', Physical Review Applied, 17, http://dx.doi.org/10.1103/PhysRevApplied.17.054006
,2022, 'Spin-Photon Coupling for Atomic Qubit Devices in Silicon', Physical Review Applied, 17, http://dx.doi.org/10.1103/PhysRevApplied.17.054007
,2022, 'Shallow dopant pairs in silicon: An atomistic full configuration interaction study', Physical Review B, 105, http://dx.doi.org/10.1103/PhysRevB.105.155158
,2022, 'Single site optical spectroscopy of coupled Er3+ion pairs in silicon', Quantum Science and Technology, 7, http://dx.doi.org/10.1088/2058-9565/ac56c7
,2022, 'Erratum: Time-Resolved Photoionization Detection of a Single Er3+Ion in Silicon (Nano Letters (2022) 22:1 (396-401) DOI: 10.1021/acs.nanolett.1c04072)', Nano Letters, 22, pp. 1456 - 1456, http://dx.doi.org/10.1021/acs.nanolett.2c00173
,2022, 'Time-Resolved Photoionization Detection of a Single Er3+Ion in Silicon', Nano Letters, 22, pp. 396 - 401, http://dx.doi.org/10.1021/acs.nanolett.1c04072
,2022, 'From the Executive', Australian Physics, 59, pp. 7
,2021, 'Optimal operation points for ultrafast, highly coherent Ge hole spin-orbit qubits', npj Quantum Information, 7, http://dx.doi.org/10.1038/s41534-021-00386-2
,2021, 'Novel characterization of dopant-based qubits', MRS Bulletin, 46, pp. 616 - 622, http://dx.doi.org/10.1557/s43577-021-00136-x
,2021, 'Ultrashallow Junction Electrodes in Low-Loss Silicon Microring Resonators', Physical Review Applied, 15, http://dx.doi.org/10.1103/PhysRevApplied.15.044014
,2021, 'Isotopic enrichment of silicon by high fluence 28Si- ion implantation', Physical Review Materials, 5, http://dx.doi.org/10.1103/PhysRevMaterials.5.014601
,2021, 'Engineering long spin coherence times of spin–orbit qubits in silicon', Nature Materials, 20, pp. 38 - 42, http://dx.doi.org/10.1038/s41563-020-0743-3
,2020, 'Valley interference and spin exchange at the atomic scale in silicon', Nature Communications, 11, http://dx.doi.org/10.1038/s41467-020-19835-1
,2020, 'Depth Estimation for Light-Field Images Using Stereo Matching and Convolutional Neural Networks', SENSORS, 20, http://dx.doi.org/10.3390/s20216188
,2020, 'High-resolution spectroscopy of individual erbium ions in strong magnetic fields', Physical Review B, 102, http://dx.doi.org/10.1103/PhysRevB.102.155309
,2020, 'Scanned Single-Electron Probe inside a Silicon Electronic Device', ACS Nano, 14, pp. 9449 - 9455, http://dx.doi.org/10.1021/acsnano.0c00736
,2020, 'The role of science in the international response to COVID-19 and the imminent cuts to stem education', Australian Physics, 57, pp. 7
,2020, 'Ultrastrong coupling between a microwave resonator and antiferromagnetic resonances of rare-earth ion spins', Physical Review B, 101, http://dx.doi.org/10.1103/PhysRevB.101.214414
,2020, 'Certification of spin-based quantum simulators', Physical Review A, 101, http://dx.doi.org/10.1103/PhysRevA.101.052344
,2019, 'Hole spin echo envelope modulations', Physical Review B, 100, http://dx.doi.org/10.1103/PhysRevB.100.125402
,2019, 'Single Rare-Earth Ions as Atomic-Scale Probes in Ultrascaled Transistors', Nano Letters, 19, pp. 5025 - 5030, http://dx.doi.org/10.1021/acs.nanolett.9b01281
,2019, 'Full-visible multifunctional aluminium metasurfaces by: In situ anisotropic thermoplasmonic laser printing', Nanoscale Horizons, 4, pp. 601 - 609, http://dx.doi.org/10.1039/c9nh00003h
,2018, 'Readout and control of the spin-orbit states of two coupled acceptor atoms in a silicon transistor', Science Advances, 4, http://dx.doi.org/10.1126/sciadv.aat9199
,2018, 'Single-Shot Single-Gate rf Spin Readout in Silicon', Physical Review X, 8, http://dx.doi.org/10.1103/PhysRevX.8.041032
,2018, 'Valley Filtering in Spatial Maps of Coupling between Silicon Donors and Quantum Dots', Physical Review X, 8, http://dx.doi.org/10.1103/PhysRevX.8.031049
,2018, 'Gigahertz Single-Electron Pumping Mediated by Parasitic States', Nano Letters, 18, pp. 4141 - 4147, http://dx.doi.org/10.1021/acs.nanolett.8b00874
,2018, 'Entanglement control and magic angles for acceptor qubits in Si', Applied Physics Letters, 113, http://dx.doi.org/10.1063/1.5036521
,2018, 'Two-electron states of a group-V donor in silicon from atomistic full configuration interactions', Physical Review B, 97, pp. 195301, http://dx.doi.org/10.1103/PhysRevB.97.195301
,2018, 'シリコン中のアクセプタ不純物スピン状態の制御による長いコヒーレンス時間の実現', , pp. 265 - 265, http://dx.doi.org/10.11316/jpsgaiyo.73.2.0_265
,2017, 'Towards visualisation of central-cell-effects in scanning tunnelling microscope images of subsurface dopant qubits in silicon', Nanoscale, 9, pp. 17013 - 17019, http://dx.doi.org/10.1039/c7nr05081j
,2017, 'Implementation of Multivariable Logic Functions in Parallel by Electrically Addressing a Molecule of Three Dopants in Silicon', ChemPhysChem, 18, pp. 1790 - 1797, http://dx.doi.org/10.1002/cphc.201700222
,2017, 'Electronic states and valley-orbit coupling in linear and planar molecules formed by coupled P donors in silicon', Physical Review B, 95, http://dx.doi.org/10.1103/PhysRevB.95.205301
,2017, 'Correction to Probing the Quantum States of a Single Atom Transistor at Microwave Frequencies', ACS Nano, 11, pp. 3420 - 3420, http://dx.doi.org/10.1021/acsnano.6b08154
,2017, 'Probing the Quantum States of a Single Atom Transistor at Microwave Frequencies', ACS Nano, 11, pp. 2444 - 2451, http://dx.doi.org/10.1021/acsnano.6b06362
,2017, 'Dynamics of a single-atom electron pump', Scientific Reports, 7, http://dx.doi.org/10.1038/srep44371
,2017, 'A Probabilistic Finite State Logic Machine Realized Experimentally on a Single Dopant Atom', Nano Letters, 17, pp. 1846 - 1852, http://dx.doi.org/10.1021/acs.nanolett.6b05149
,2017, 'Superadiabatic quantum state transfer in spin chains', Physical Review A, 95, http://dx.doi.org/10.1103/PhysRevA.95.012317
,2017, 'Spin Echo Study of Boron in 28Si at Millikelvin Temperature', , pp. 1023 - 1023, http://dx.doi.org/10.11316/jpsgaiyo.72.2.0_1023
,2016, 'High-Sensitivity Charge Detection with a Single-Lead Quantum Dot for Scalable Quantum Computation', Physical Review Applied, 6, pp. 044016, http://dx.doi.org/10.1103/PhysRevApplied.6.044016
,