Select Publications
Book Chapters
2015, 'Multimillion Atom Simulation of Electronic and Optical Properties of Nanoscale Devices Using NEMO 3-D', in Encyclopedia of Complexity and Systems Science, Springer Berlin Heidelberg, pp. 1 - 69, http://dx.doi.org/10.1007/978-3-642-27737-5_343-2
,2013, 'Orbital structure and transport characteristics of single donors', in Prati E; Shinada T (ed.), Single-Atom Nanoelectronics, Pan Stanford Publishing, Stanford, pp. 211 - 230, http://dx.doi.org/10.1201/b14792-10
,2013, 'Theory and Simulations of Controlled Electronic States Bound to a Single Dopant in Silicon', in Prati E; Shinada T (ed.), SINGLE-ATOM NANOELECTRONICS, PAN STANFORD PUBLISHING PTE LTD, pp. 41 - 59
,, 2012, 'Dopant Metrology in Advanced FinFETs', in CMOS Nanoelectronics, Jenny Stanford Publishing, pp. 417 - 443, http://dx.doi.org/10.1201/b13063-16
, 2012, 'New Tools for the Direct Characterisation of FinFETS', in CMOS Nanoelectronics, Jenny Stanford Publishing, pp. 379 - 416, http://dx.doi.org/10.1201/b13063-15
2012, 'Dopant Metrology in Advanced FinFETs', in Collaert N (ed.), CMOS NANOELECTRONICS: INNOVATIVE DEVICES, ARCHITECTURES, AND APPLICATIONS, Pan Stanford Publishing 2012, Singapore, pp. 399 - 412, http://dx.doi.org/10.4032/9789814364034
,2012, 'New Tools for the Direct Characterisation of FinFETS', in Collaert N (ed.), CMOS NANOELECTRONICS: INNOVATIVE DEVICES, ARCHITECTURES, AND APPLICATIONS, Pan Stanford Publishing 2012, Singapore, pp. 361 - 398, http://dx.doi.org/10.4032/9789814364034
,2009, 'Multimillion Atom Simulations with Nemo3D', in Encyclopedia of Complexity and Systems Science, Springer New York, pp. 5745 - 5783, http://dx.doi.org/10.1007/978-0-387-30440-3_343
,Journal articles
2024, 'Bounds to electron spin qubit variability for scalable CMOS architectures', Nature Communications, 15, http://dx.doi.org/10.1038/s41467-024-48557-x
,2024, 'Impact of electrostatic crosstalk on spin qubits in dense CMOS quantum dot arrays', Physical Review B, 110, http://dx.doi.org/10.1103/PhysRevB.110.125414
,2024, 'Engineering Spin-Orbit Interactions in Silicon Qubits at the Atomic-Scale', Advanced Materials, 36, http://dx.doi.org/10.1002/adma.202312736
,2024, 'High-fidelity initialization and control of electron and nuclear spins in a four-qubit register', Nature Nanotechnology, 19, pp. 605 - 611, http://dx.doi.org/10.1038/s41565-023-01596-9
,2024, 'Symmetry Breaking and Spin-Orbit Coupling for Individual Vacancy-Induced In-Gap States in MoS
2024, 'Exploiting Atomic Control to Show When Atoms Become Molecules', Advanced Functional Materials, 34, http://dx.doi.org/10.1002/adfm.202307285
,2024, 'Impact of measurement backaction on nuclear spin qubits in silicon', Physical Review B, 109, http://dx.doi.org/10.1103/PhysRevB.109.035157
,2024, 'Measurement of Enhanced Spin-Orbit Coupling Strength for Donor-Bound Electron Spins in Silicon', Advanced Materials, http://dx.doi.org/10.1002/adma.202405916
,2024, 'Superexchange coupling of donor qubits in silicon', Physical Review Applied, 21, http://dx.doi.org/10.1103/PhysRevApplied.21.014038
,2023, 'First-principles study of large gyrotropy in MnBi for infrared thermal photonics', Physical Review B, 108, http://dx.doi.org/10.1103/PhysRevB.108.224307
,2023, 'Atomic Engineering of Molecular Qubits for High-Speed, High-Fidelity Single Qubit Gates', ACS Nano, 17, pp. 22601 - 22610, http://dx.doi.org/10.1021/acsnano.3c06668
,2023, 'Efficient and stable piezo-photocatalytic splitting of water and seawater by interfacial engineering of Na
2023, 'Practical strategies for enhancing the valley splitting in Si/SiGe quantum wells', Physical Review B, 108, http://dx.doi.org/10.1103/PhysRevB.108.125405
,2023, 'Spin-Valley Locking for In-Gap Quantum Dots in a MoS
2023, 'Limits to Quantum Gate Fidelity from Near-Field Thermal and Vacuum Fluctuations', Physical Review Applied, 19, http://dx.doi.org/10.1103/PhysRevApplied.19.064038
,2023, 'Multi-Scale Modeling of Tunneling in Nanoscale Atomically Precise Si:P Tunnel Junctions', Advanced Functional Materials, 33, http://dx.doi.org/10.1002/adfm.202214011
,2023, 'Hyperfine-mediated spin relaxation in donor-atom qubits in silicon', Physical Review Research, 5, http://dx.doi.org/10.1103/PhysRevResearch.5.023043
,2023, 'The Use of Exchange Coupled Atom Qubits as Atomic-Scale Magnetic Field Sensors', Advanced Materials, 35, http://dx.doi.org/10.1002/adma.202201625
,2023, 'The Use of Exchange Coupled Atom Qubits as Atomic‐Scale Magnetic Field Sensors (Adv. Mater. 6/2023)', Advanced Materials, 35, http://dx.doi.org/10.1002/adma.202370039
,2022, 'Ab-initio calculations of shallow dopant qubits in silicon from pseudopotential and all-electron mixed approach', Communications Physics, 5, http://dx.doi.org/10.1038/s42005-022-00948-6
,2022, 'Atomic fluctuations lifting the energy degeneracy in Si/SiGe quantum dots', Nature Communications, 13, http://dx.doi.org/10.1038/s41467-022-35458-0
,2022, 'Author Correction: Ab-initio calculations of shallow dopant qubits in silicon from pseudopotential and all-electron mixed approach (Communications Physics, (2022), 5, 1, (165), 10.1038/s42005-022-00948-6)', Communications Physics, 5, http://dx.doi.org/10.1038/s42005-022-01014-x
,2022, 'Optimisation of electron spin qubits in electrically driven multi-donor quantum dots', npj Quantum Information, 8, http://dx.doi.org/10.1038/s41534-022-00646-9
,2022, 'SiGe quantum wells with oscillating Ge concentrations for quantum dot qubits', Nature Communications, 13, http://dx.doi.org/10.1038/s41467-022-35510-z
,2022, 'Shelving and latching spin readout in atom qubits in silicon', Physical Review B, 106, http://dx.doi.org/10.1103/PhysRevB.106.075418
,2022, 'Valley population of donor states in highly strained silicon', Materials for Quantum Technology, 2, pp. 025002 - 025002, http://dx.doi.org/10.1088/2633-4356/ac5d1d
,2022, 'Flopping-Mode Electric Dipole Spin Resonance in Phosphorus Donor Qubits in Silicon', Physical Review Applied, 17, http://dx.doi.org/10.1103/PhysRevApplied.17.054006
,2022, 'Spin-Photon Coupling for Atomic Qubit Devices in Silicon', Physical Review Applied, 17, http://dx.doi.org/10.1103/PhysRevApplied.17.054007
,2022, 'Shallow dopant pairs in silicon: An atomistic full configuration interaction study', Physical Review B, 105, http://dx.doi.org/10.1103/PhysRevB.105.155158
,2022, 'Deep ultra-violet plasmonics: exploiting momentum-resolved electron energy loss spectroscopy to probe germanium', Optics Express, 30, pp. 12630 - 12638, http://dx.doi.org/10.1364/OE.447017
,2022, 'Nonadiabatic quantum control of valley states in silicon', Physical Review B, 105, http://dx.doi.org/10.1103/PhysRevB.105.075406
,2022, 'A low resistance and stable lithium-garnet electrolyte interface enabled by a multifunctional anode additive for solid-state lithium batteries', Journal of Materials Chemistry A, 10, pp. 2519 - 2527, http://dx.doi.org/10.1039/d1ta07804f
,2021, 'Materials and device simulations for silicon qubit design and optimization', MRS Bulletin, 46, pp. 634 - 641, http://dx.doi.org/10.1557/s43577-021-00140-1
,2021, 'Novel characterization of dopant-based qubits', MRS Bulletin, 46, pp. 616 - 622, http://dx.doi.org/10.1557/s43577-021-00136-x
,2021, 'Exchange Coupling in a Linear Chain of Three Quantum-Dot Spin Qubits in Silicon', Nano Letters, 21, pp. 1517 - 1522, http://dx.doi.org/10.1021/acs.nanolett.0c04771
,2020, 'The sub-band structure of atomically sharp dopant profiles in silicon', npj Quantum Materials, 5, http://dx.doi.org/10.1038/s41535-020-0237-1
,2020, 'Valley interference and spin exchange at the atomic scale in silicon', Nature Communications, 11, http://dx.doi.org/10.1038/s41467-020-19835-1
,2020, 'Electron g -factor engineering for nonreciprocal spin photonics', Physical Review B, 101, http://dx.doi.org/10.1103/PhysRevB.101.035412
,2019, 'WSe
2019, 'Aharonov–Bohm interference of fractional quantum Hall edge modes', Nature Physics, 15, pp. 563 - 569, http://dx.doi.org/10.1038/s41567-019-0441-8
,2019, 'Complementary Black Phosphorus Tunneling Field-Effect Transistors', ACS Nano, 13, pp. 377 - 385, http://dx.doi.org/10.1021/acsnano.8b06441
,2019, 'Alloy Engineered Nitride Tunneling Field-Effect Transistor: A Solution for the Challenge of Heterojunction TFETs', IEEE Transactions on Electron Devices, 66, pp. 736 - 742, http://dx.doi.org/10.1109/TED.2018.2877753
,