Select Publications
Working Papers
2023, Bounds to electron spin qubit variability for scalable CMOS architectures, http://dx.doi.org10.21203/rs.3.rs-3057916/v1, http://dx.doi.org/10.21203/rs.3.rs-3057916/v1
,Preprints
2024, Measurement of enhanced spin-orbit coupling strength for donor-bound electron spins in silicon, http://dx.doi.org/10.48550/arxiv.2404.15762
,2024, Symmetry breaking and spin-orbit coupling for individual vacancy-induced in-gap states in MoS2 monolayers, http://dx.doi.org/10.48550/arxiv.2402.01193
,2023, Impact of measurement backaction on nuclear spin qubits in silicon, http://dx.doi.org/10.48550/arxiv.2310.12656
,2023, Impact of electrostatic crosstalk on spin qubits in dense CMOS quantum dot arrays, http://dx.doi.org/10.1103/PhysRevB.110.125414
,2023, Superexchange coupling of donor qubits in silicon, http://dx.doi.org/10.48550/arxiv.2309.00276
,2023, Spin-valley locking for in-gap quantum dots in a MoS2 transistor, http://dx.doi.org/10.48550/arxiv.2306.13542
,2023, First-Principles Study of Large Gyrotropy in MnBi for Infrared Thermal Photonics, http://dx.doi.org/10.48550/arxiv.2306.09233
,2023, Bounds to electron spin qubit variability for scalable CMOS architectures, http://dx.doi.org/10.1038/s41467-024-48557-x
,2023, Practical Strategies for Enhancing the Valley Splitting in Si/SiGe Quantum Wells, http://dx.doi.org/10.48550/arxiv.2303.02499
,2022, Limits to Quantum Gate Fidelity from Near-Field Thermal and Vacuum Fluctuations, http://dx.doi.org/10.48550/arxiv.2207.09441
,2022, Optimisation of electrically-driven multi-donor quantum dot qubits, http://dx.doi.org/10.48550/arxiv.2203.16553
,2021, Atomic fluctuations lifting the energy degeneracy in Si/SiGe quantum dots, http://dx.doi.org/10.48550/arxiv.2112.09606
,2021, SiGe quantum wells with oscillating Ge concentrations for quantum dot qubits, http://dx.doi.org/10.48550/arxiv.2112.09765
,2021, Valley population of donor states in highly strained silicon, http://dx.doi.org/10.48550/arxiv.2109.08540
,2021, Novel characterisation of dopant-based qubits, http://dx.doi.org/10.48550/arxiv.2107.00784
,2021, Non-adiabatic quantum control of valley states in silicon, http://dx.doi.org/10.48550/arxiv.2105.13668
,2021, Valley interference and spin exchange at the atomic scale in silicon, http://dx.doi.org/10.48550/arxiv.2105.10931
,2021, Flopping-mode electric dipole spin resonance in phosphorus donor qubits in silicon, http://dx.doi.org/10.48550/arxiv.2105.02906
,2021, Spin-photon coupling for atomic qubit devices in silicon, http://dx.doi.org/10.48550/arxiv.2105.02904
,2020, Exchange coupling in a linear chain of three quantum-dot spin qubits in silicon, http://dx.doi.org/10.48550/arxiv.2004.07666
,2019, Electron g-factor engineering for non-reciprocal spin photonics, http://dx.doi.org/10.48550/arxiv.1908.06393
,2019, The Sub-band Structure of Atomically Sharp Dopant Profiles in Silicon, http://dx.doi.org/10.48550/arxiv.1904.10929
,2019, Aharonov-Bohm interference of fractional quantum Hall edge modes, http://dx.doi.org/10.48550/arxiv.1901.08452
,2018, Addressable electron spin resonance using donors and donor molecules in silicon, http://dx.doi.org/10.48550/arxiv.1807.10290
,2018, Channel thickness optimization for ultra thin and 2D chemically doped TFETs, http://dx.doi.org/10.48550/arxiv.1804.11034
,2017, Switching Mechanism and the Scalability of vertical-TFETs, http://dx.doi.org/10.48550/arxiv.1711.01832
,2017, Sensitivity Challenge of Steep Transistors, http://dx.doi.org/10.48550/arxiv.1709.06276
,2017, Valley filtering and spatial maps of coupling between silicon donors and quantum dots, http://dx.doi.org/10.48550/arxiv.1706.09261
,2017, Optimization of edge state velocity in the integer quantum Hall regime, http://dx.doi.org/10.48550/arxiv.1705.07005
,2017, Dramatic Impact of Dimensionality on the Electrostatics of PN Junctions, http://dx.doi.org/10.48550/arxiv.1704.05488
,2017, Two-electron states of a group V donor in silicon from atomistic full configuration interaction, http://dx.doi.org/10.48550/arxiv.1703.04175
,2017, Interface induced spin-orbit interaction in silicon quantum dots and prospects for scalability, http://dx.doi.org/10.48550/arxiv.1703.03840
,2017, Valley dependent anisotropic spin splitting in silicon quantum dots, http://dx.doi.org/10.48550/arxiv.1702.06210
,2017, Combination of equilibrium and non-equilibrium carrier statistics into an atomistic quantum transport model for tunneling hetero-junctions, http://dx.doi.org/10.48550/arxiv.1702.01248
,2017, A Multiscale Modeling of Triple-Heterojunction Tunneling FETs, http://dx.doi.org/10.48550/arxiv.1701.00480
,2016, Impact of Dimensionality on PN Junctions, http://dx.doi.org/10.48550/arxiv.1611.08784
,2016, Transport in vertically stacked hetero-structures from 2D materials, http://dx.doi.org/10.48550/arxiv.1608.05057
,2016, Thickness Engineered Tunnel Field-Effect Transistors based on Phosphorene, http://dx.doi.org/10.48550/arxiv.1607.04065
,2016, Characterizing Si:P quantum dot qubits with spin resonance techniques, http://dx.doi.org/10.48550/arxiv.1607.01086
,2016, Saving Moore's Law Down To 1nm Channels With Anisotropic Effective Mass, http://dx.doi.org/10.48550/arxiv.1605.03979
,2016, Design Rules for High Performance Tunnel Transistors from 2D Materials, http://dx.doi.org/10.48550/arxiv.1603.09402
,2016, Transport of Spin Qubits with Donor Chains under Realistic Experimental Conditions, http://dx.doi.org/10.48550/arxiv.1602.07058
,2016, Spatial Metrology of Dopants in Silicon with Exact Lattice Site Precision, http://dx.doi.org/10.48550/arxiv.1601.02326
,2015, Few-layer Phosphorene: An Ideal 2D Material For Tunnel Transistors, http://dx.doi.org/10.48550/arxiv.1512.05021
,2015, Bulk and sub-surface donor bound excitons in silicon under electric fields, http://dx.doi.org/10.48550/arxiv.1510.00065
,2015, Silicon quantum processor with robust long-distance qubit couplings, http://dx.doi.org/10.48550/arxiv.1509.08538
,2015, From Fowler-Nordheim to Non-Equilibrium Green's Function Modeling of Tunneling, http://dx.doi.org/10.48550/arxiv.1509.08170
,2015, Can Tunnel Transistors Scale Below 10nm?, http://dx.doi.org/10.48550/arxiv.1509.08032
,2015, Universal Behavior of Strain in Quantum Dots, http://dx.doi.org/10.48550/arxiv.1509.08004
,