Select Publications
Journal articles
2014, 'Splitting valleys in Si/ SiO2: Identification and control of interface states', Physical Review B - Condensed Matter and Materials Physics, 89, http://dx.doi.org/10.1103/PhysRevB.89.205307
,2013, 'Genetic design of enhanced valley splitting towards a spin qubit in silicon', Nature Communications, 4, http://dx.doi.org/10.1038/ncomms3396
,2012, 'Impact of the valley degree of freedom on the control of donor electrons near a Si/SiO
2012, 'Valley-based noise-resistant quantum computation using Si quantum dots', Physical Review Letters, 108, http://dx.doi.org/10.1103/PhysRevLett.108.126804
,2011, 'Intervalley coupling for interface-bound electrons in silicon: An effective mass study', Physical Review B - Condensed Matter and Materials Physics, 84, http://dx.doi.org/10.1103/PhysRevB.84.155320
,2010, 'Extended interface states enhance valley splitting in Si/ SiO
2009, 'Physical mechanisms of interface-mediated intervalley coupling in Si', Physical Review B - Condensed Matter and Materials Physics, 80, http://dx.doi.org/10.1103/PhysRevB.80.081305
,2007, 'Reliability of the Heitler-London approach for the exchange coupling between electrons in semiconductor nanostructures', Physical Review B - Condensed Matter and Materials Physics, 76, http://dx.doi.org/10.1103/PhysRevB.76.233302
,Conference Papers
2024, 'Demonstration of 99.9% single qubit control fidelity of a silicon quantum dot spin qubit made in a 300 mm foundry process', in 2024 IEEE Silicon Nanoelectronics Workshop, SNW 2024, pp. 11 - 12, http://dx.doi.org/10.1109/SNW63608.2024.10639218
,2024, 'Electronic Correlations in Multielectron Silicon Quantum Dots', in Proceedings of the IEEE Conference on Nanotechnology, pp. 527 - 532, http://dx.doi.org/10.1109/NANO61778.2024.10628628
,2023, 'Optimization of Silicon MOS Architecture for Self-Referenced Quantum Current Standard', in Proceedings - 2023 IEEE International Conference on Quantum Computing and Engineering, QCE 2023, pp. 310 - 311, http://dx.doi.org/10.1109/QCE57702.2023.10257
,, 2019, 'Quantum correlations in the stokes-anti-stokes raman scattering: Photonic cooper pairs', in Proceedings Rochester Conference on Coherence and Quantum Optics, CQO 2019
2019, 'Quantum correlations in the stokes-anti-stokes raman scattering: Photonic cooper pairs', in Proceedings Rochester Conference on Coherence and Quantum Optics, CQO 2019
,2019, 'Quantum Correlations in the Stokes-anti-Stokes Raman Scattering: Photonic Cooper pairs', in Optics InfoBase Conference Papers, Rochester, New York United States, presented at CQO-11, Rochester, New York United States, 04 August 2019 - 08 August 2019
,2015, 'A single-molecule transistor in silicon', in 2014 Silicon Nanoelectronics Workshop, SNW 2014, http://dx.doi.org/10.1109/SNW.2014.7348581
,2009, 'Quantum control and manipulation of donor electrons in Si-based quantum computing', in Journal of Applied Physics, http://dx.doi.org/10.1063/1.3124084
,Working Papers
2023, Bounds to electron spin qubit variability for scalable CMOS architectures, http://dx.doi.org10.21203/rs.3.rs-3057916/v1, http://dx.doi.org/10.21203/rs.3.rs-3057916/v1
,Creative Works (non-textual)
2023, Jellybean Quantum Dots in Silicon for Qubit Coupling and On‐Chip Quantum Chemistry (Adv. Mater. 19/2023), at: http://dx.doi.org/10.1002/adma.202370133
,Preprints
2024, CMOS compatibility of semiconductor spin qubits, http://arxiv.org/abs/2409.03993v1
,2024, Violating Bell's inequality in gate-defined quantum dots, http://arxiv.org/abs/2407.15778v2
,2024, Electronic Correlations in Multielectron Silicon Quantum Dots, http://dx.doi.org/10.48550/arxiv.2407.04289
,2023, Entangling gates on degenerate spin qubits dressed by a global field, http://dx.doi.org/10.1038/s41467-024-52010-4
,2023, Real-time feedback protocols for optimizing fault-tolerant two-qubit gate fidelities in a silicon spin system, http://dx.doi.org/10.1063/5.0179958
,2023, Spatio-temporal correlations of noise in MOS spin qubits, http://arxiv.org/abs/2309.12542v2
,2023, Electrical operation of hole spin qubits in planar MOS silicon quantum dots, http://dx.doi.org/10.48550/arxiv.2309.12243
,2023, Silicon charge pump operation limit above and below liquid helium temperature, http://dx.doi.org/10.1103/PhysRevApplied.21.014040
,2023, Impact of electrostatic crosstalk on spin qubits in dense CMOS quantum dot arrays, http://dx.doi.org/10.1103/PhysRevB.110.125414
,2023, Methods for transverse and longitudinal spin-photon coupling in silicon quantum dots with intrinsic spin-orbit effect, http://arxiv.org/abs/2308.12626v1
,2023, Characterizing non-Markovian Quantum Process by Fast Bayesian Tomography, http://arxiv.org/abs/2307.12452v2
,2023, Improved Single-Shot Qubit Readout Using Twin RF-SET Charge Correlations, http://dx.doi.org/10.1103/PRXQuantum.5.010301
,2023, Path integral simulation of exchange interactions in CMOS spin qubits, http://dx.doi.org/10.1103/PhysRevB.108.155413
,2023, Electrical operation of planar Ge hole spin qubits in an in-plane magnetic field, http://dx.doi.org/10.1103/PhysRevB.108.245301
,2023, Bounds to electron spin qubit variability for scalable CMOS architectures, http://dx.doi.org/10.1038/s41467-024-48557-x
,2023, Accessing the Full Capabilities of Filter Functions: A Tool for Detailed Noise and Control Susceptibility Analysis, http://dx.doi.org/10.1103/PhysRevA.108.012426
,2022, Jellybean quantum dots in silicon for qubit coupling and on-chip quantum chemistry, http://dx.doi.org/10.1002/adma.202208557
,2022, Control of dephasing in spin qubits during coherent transport in silicon, http://dx.doi.org/10.1103/PhysRevB.107.085427
,2022, Indirect control of the 29SiV- nuclear spin in diamond, http://dx.doi.org/10.48550/arxiv.2203.10283
,2022, On-demand electrical control of spin qubits, http://dx.doi.org/10.1038/s41565-022-01280-4
,2021, Development of an Undergraduate Quantum Engineering Degree, http://dx.doi.org/10.1109/TQE.2022.3157338
,2021, Implementation of the SMART protocol for global qubit control in silicon, http://dx.doi.org/10.48550/arxiv.2108.00836
,2021, Quantum Computation Protocol for Dressed Spins in a Global Field, http://dx.doi.org/10.1103/PhysRevB.104.235411
,2021, The SMART protocol -- Pulse engineering of a global field for robust and universal quantum computation, http://dx.doi.org/10.1103/PhysRevA.104.062415
,2021, Coherent control of electron spin qubits in silicon using a global field, http://dx.doi.org/10.48550/arxiv.2107.14622
,2021, Fast Bayesian tomography of a two-qubit gate set in silicon, http://dx.doi.org/10.48550/arxiv.2107.14473
,2021, Materials for Silicon Quantum Dots and their Impact on Electron Spin Qubits, http://arxiv.org/abs/2107.13664v2
,2021, A high-sensitivity charge sensor for silicon qubits above one kelvin, http://dx.doi.org/10.48550/arxiv.2103.06433
,2020, Full configuration interaction simulations of exchange-coupled donors in silicon using multi-valley effective mass theory, http://dx.doi.org/10.48550/arxiv.2012.06293
,2020, Bell-state tomography in a silicon many-electron artificial molecule, http://dx.doi.org/10.48550/arxiv.2008.03968
,2020, Coherent spin qubit transport in silicon, http://dx.doi.org/10.48550/arxiv.2008.04020
,2020, Single-electron operation of a silicon-CMOS 2x2 quantum dot array with integrated charge sensing, http://dx.doi.org/10.48550/arxiv.2004.11558
,