Select Publications
Journal articles
2024, 'Integration of urban climate research within the global climate change discourse', PLOS Climate, 3, pp. e0000473 - e0000473, http://dx.doi.org/10.1371/journal.pclm.0000473
,2024, 'Assessing heat stress with a mesoscale model. An application of WRF-comfort to Madrid', , http://dx.doi.org/10.5194/ems2024-1136
,2024, 'WRF-Comfort: simulating microscale variability in outdoor heat stress at the city scale with a mesoscale model', Geoscientific Model Development, 17, pp. 5023 - 5039, http://dx.doi.org/10.5194/gmd-17-5023-2024
,2024, 'A one-dimensional urban flow model with an eddy-diffusivity mass-flux (EDMF) scheme and refined turbulent transport (MLUCM v3.0)', Geoscientific Model Development, 17, pp. 2525 - 2545, http://dx.doi.org/10.5194/gmd-17-2525-2024
,2024, 'Representing the effects of building height variability on urban canopy flow', Quarterly Journal of the Royal Meteorological Society, 150, pp. 46 - 67, http://dx.doi.org/10.1002/qj.4584
,2023, 'Novel Geometric Parameters for Assessing Flow Over Realistic Versus Idealized Urban Arrays', Journal of Advances in Modeling Earth Systems, 15, http://dx.doi.org/10.1029/2022MS003287
,2023, 'Land surface and air temperature dynamics: The role of urban form and seasonality', The Science of The Total Environment, 905, pp. 167306 - 167306, http://dx.doi.org/10.1016/j.scitotenv.2023.167306
,, 2023, 'Urban climate informatics', , http://dx.doi.org/10.3389/978-2-83251-592-1
2022, 'Background climate modulates the impact of land cover on urban surface temperature', Scientific Reports, 12, http://dx.doi.org/10.1038/s41598-022-19431-x
,2022, 'Transformational IoT sensing for air pollution and thermal exposures', Frontiers in Built Environment, 8, http://dx.doi.org/10.3389/fbuil.2022.971523
,2022, 'Isolating the impacts of urban form and fabric from geography on urban heat and human thermal comfort', Building and Environment, 224, http://dx.doi.org/10.1016/j.buildenv.2022.109502
,2022, 'Integrated Assessment of Urban Overheating Impacts on Human Life', Earth's Future, 10, http://dx.doi.org/10.1029/2022EF002682
,2022, 'A Transformation in City-Descriptive Input Data for Urban Climate Models', Frontiers in Environmental Science, 10, http://dx.doi.org/10.3389/fenvs.2022.866398
,2022, 'Urban Climate Informatics: An Emerging Research Field', Frontiers in Environmental Science, 10, http://dx.doi.org/10.3389/fenvs.2022.867434
,2022, 'Turbulence Characteristics Across a Range of Idealized Urban Canopy Geometries', Boundary-Layer Meteorology, 182, pp. 275 - 307, http://dx.doi.org/10.1007/s10546-021-00658-6
,2021, 'Integrated Assessment of Urban Overheating Impacts on Human Life', Earth's Future, http://dx.doi.org/10.1002/essoar.10508877.2
,2021, 'Towards a Living Lab for Enhanced Thermal Comfort and Air Quality: Analyses of Standard Occupancy, Weather Extremes, and COVID-19 Pandemic', Frontiers in Environmental Science, 9, pp. 725974, http://dx.doi.org/10.3389/fenvs.2021.725974
,2021, 'Combining High-Resolution Land Use Data With Crowdsourced Air Temperature to Investigate Intra-Urban Microclimate', Frontiers in Environmental Science, 9, pp. 720323, http://dx.doi.org/10.3389/fenvs.2021.720323
,2021, 'Dynamic thermal pleasure in outdoor environments - temporal alliesthesia', Science of the Total Environment, 771, http://dx.doi.org/10.1016/j.scitotenv.2020.144910
,2021, 'Personal assessment of urban heat exposure: A systematic review', Environmental Research Letters, 16, http://dx.doi.org/10.1088/1748-9326/abd350
,2021, 'Project Coolbit: Can your watch predict heat stress and thermal comfort sensation?', Environmental Research Letters, 16, http://dx.doi.org/10.1088/1748-9326/abd130
,2021, 'The Vertical City Weather Generator (VCWG v1.3.2)', GEOSCIENTIFIC MODEL DEVELOPMENT, 14, pp. 961 - 984, http://dx.doi.org/10.5194/gmd-14-961-2021
,2021, 'The vertical city weather generator (vcwg v1.3.2)', Geoscientific Model Development, 14, pp. 961 - 984, http://dx.doi.org/10.5194/gmd-14-961-2021
,2021, 'The Vertical City Weather Generator (VCWG v1.3.2)', Geoscientific Model Development, 14, pp. 961 - 984, http://dx.doi.org/10.5194/gmd-14-961-2021
,2021, 'The Vertical City Weather Generator (VCWG v1.3.2)', Geoscientific Model Development, 14, pp. 961 - 984, http://dx.doi.org/10.5194/gmd-14-961-2021
,2021, 'The Vertical City Weather Generator (VCWG v1.0.0)', Geoscientific Model Development, http://dx.doi.org/10.5194/gmd-2019-176
,2020, 'From thermal sensation to thermal affect: A multi-dimensional semantic space to assess outdoor thermal comfort', Building and Environment, 182, http://dx.doi.org/10.1016/j.buildenv.2020.107112
,2020, 'Summer average urban-rural surface temperature differences do not indicate the need for urban heat reduction', Open Science Framework (OSF), http://dx.doi.org/10.31219/osf.io/8gnbf
,2020, 'A multi-layer urban canopy meteorological model with trees (BEP-Tree): Street tree impacts on pedestrian-level climate', Urban Climate, 32, http://dx.doi.org/10.1016/j.uclim.2020.100590
,2020, 'A one-dimensional model of turbulent flow through "urban" canopies (MLUCM v2.0): Updates based on large-eddy simulation', Geoscientific Model Development, 13, pp. 937 - 953, http://dx.doi.org/10.5194/gmd-13-937-2020
,2020, 'Is the Urban Heat Island intensity relevant for heat mitigation studies?', Urban Climate, 31, http://dx.doi.org/10.1016/j.uclim.2019.100541
,2019, 'Is your clock-face cozie? A smartwatch methodology for the in-situ collection of occupant comfort data', Journal of Physics: Conference Series, 1343, http://dx.doi.org/10.1088/1742-6596/1343/1/012145
,2019, 'Effectiveness of cool walls on cooling load and urban temperature in a tropical climate', Energy and Buildings, 187, pp. 144 - 162, http://dx.doi.org/10.1016/j.enbuild.2019.01.022
,2019, 'Outdoor Thermal Comfort Autonomy: Performance Metrics for Climate-Conscious Design', Building and Environment, 155, pp. 145 - 160, http://dx.doi.org/10.1016/j.buildenv.2019.03.028
,2018, 'Numerical modeling of outdoor thermal comfort in 3D', Urban Climate, 26, pp. 212 - 230, http://dx.doi.org/10.1016/j.uclim.2018.09.001
,2018, 'Impacts of Realistic Urban Heating. Part II: Air Quality and City Breathability', Boundary-Layer Meteorology, 168, pp. 321 - 341, http://dx.doi.org/10.1007/s10546-018-0346-6
,2018, 'Impacts of Realistic Urban Heating, Part I: Spatial Variability of Mean Flow, Turbulent Exchange and Pollutant Dispersion', Boundary-Layer Meteorology, 166, pp. 367 - 393, http://dx.doi.org/10.1007/s10546-017-0311-9
,2017, 'Pedestrian-level urban wind flow enhancement with wind catchers', Atmosphere, 8, http://dx.doi.org/10.3390/atmos8090159
,2017, 'Effects of Roof-Edge Roughness on Air Temperature and Pollutant Concentration in Urban Canyons', Boundary-Layer Meteorology, 164, pp. 249 - 279, http://dx.doi.org/10.1007/s10546-017-0246-1
,2017, 'Predicting outdoor thermal comfort in urban environments: A 3D numerical model for standard effective temperature', Urban Climate, 20, pp. 251 - 267, http://dx.doi.org/10.1016/j.uclim.2017.04.011
,2016, 'Realistic solar heating in urban areas: Air exchange and street-canyon ventilation', Building and Environment, 95, pp. 75 - 93, http://dx.doi.org/10.1016/j.buildenv.2015.08.021
,2015, 'CFD simulation of an idealized urban environment: Thermal effects of geometrical characteristics and surface materials', Urban Climate, 12, pp. 141 - 159, http://dx.doi.org/10.1016/j.uclim.2015.03.002
,2008, 'A protective role for TIMP3 in acute lung injury', Matrix Biology, 27, pp. 45 - 45, http://dx.doi.org/10.1016/j.matbio.2008.09.362
,