ORCID as entered in ROS

Select Publications
2014, Aquatic organic matter fluorescence, Coble PG; Lead J; Baker A; Reynolds DM; Spencer RG M, (eds.), CAMBRIDGE ENVIRONMENTAL CHEMISTRY SERIES, Cambridge University Press, New York, http://www.cambridge.org/au/academic/subjects/earth-and-environmental-science/geochemistry-and-environmental-chemistry/aquatic-organic-matter-fluorescence?format=HB#contentsTabAnchor
,2012, Speleothem Science, 1st, Wiley, http://au.wiley.com/WileyCDA/WileyTitle/productCd-1405196203.html
,2019, 'Investigation of Pollution in Rivers and Groundwater by Fluorescence', in Encyclopedia of Analytical Chemistry, Wiley, pp. 1 - 14, http://dx.doi.org/10.1002/9780470027318.a9412.pub2
,2014, 'Investigation of Pollution in Rivers and Groundwater by Fluorescence', in Encyclopedia of Analytical Chemistry, edn. 1-14, John Wiley & Sonds, http://dx.doi.org/10.1002/9780470027318.a9412
,2014, 'Fluorescence indices and their interpretation', in Coble PG; Lead J; Baker A; Reynolds DM; Spencer RG M (ed.), Aquatic Organic Matter Fluorescence, edn. CAMBRIDGE ENVIRONMENTAL CHEMISTRY SERIES, Cambridge University Press, New York, pp. 303 - 338, http://www.cambridge.org/us/academic/subjects/earth-and-environmental-science/geochemistry-and-environmental-chemistry/aquatic-organic-matter-fluorescence
,, 2012, 'Appendix 1: Archiving Speleothems and Speleothem Data', in Speleothem Science, Wiley, pp. 368 - 370, http://dx.doi.org/10.1002/9781444361094.app1
, 2012, 'Biogeochemistry of Karstic Environments', in Speleothem Science, Wiley, pp. 187 - 203, http://dx.doi.org/10.1002/9781444361094.ch6
, 2012, 'Carbonate and Karst Cave Geology', in Speleothem Science, Wiley, pp. 28 - 72, http://dx.doi.org/10.1002/9781444361094.ch2
, 2012, 'Colour Plates', in Speleothem Science, Wiley, pp. c1 - c16, http://dx.doi.org/10.1002/9781444361094.ins
, 2012, 'Dating of Speleothems', in Speleothem Science, Wiley, pp. 290 - 301, http://dx.doi.org/10.1002/9781444361094.ch9
, 2012, 'Geochemistry of Speleothems', in Speleothem Science, Wiley, pp. 245 - 289, http://dx.doi.org/10.1002/9781444361094.ch8
, 2012, 'Inorganic Water Chemistry', in Speleothem Science, Wiley, pp. 148 - 186, http://dx.doi.org/10.1002/9781444361094.ch5
, 2012, 'Introduction to Speleothems and Systems', in Speleothem Science, Wiley, pp. 1 - 27, http://dx.doi.org/10.1002/9781444361094.ch1
, 2012, 'Surface Environments: Climate, Soil and Vegetation', in Speleothem Science, Wiley, pp. 73 - 104, http://dx.doi.org/10.1002/9781444361094.ch3
, 2012, 'The Architecture of Speleothems', in Speleothem Science, Wiley, pp. 205 - 244, http://dx.doi.org/10.1002/9781444361094.ch7
, 2012, 'The Holocene Epoch: Testing the Climate and Environmental Proxies', in Speleothem Science, Wiley, pp. 324 - 352, http://dx.doi.org/10.1002/9781444361094.ch11
, 2012, 'The Instrumental Era: Calibration and Validation of Proxy‐Environment Relationships', in Speleothem Science, Wiley, pp. 303 - 323, http://dx.doi.org/10.1002/9781444361094.ch10
, 2012, 'The Pleistocene and Beyond', in Speleothem Science, Wiley, pp. 353 - 367, http://dx.doi.org/10.1002/9781444361094.ch12
, 2012, 'The Speleothem Incubator', in Speleothem Science, Wiley, pp. 105 - 147, http://dx.doi.org/10.1002/9781444361094.ch4
, 'About the Editors', in Coble P; Lead J; Baker A; Reynolds DM; Spencer RGM (ed.), Aquatic Organic Matter Fluorescence, Cambridge University Press, pp. xi - xii, http://dx.doi.org/10.1017/cbo9781139045452.001
, 'Plate Section', in Coble P; Lead J; Baker A; Reynolds DM; Spencer RGM (ed.), Aquatic Organic Matter Fluorescence, Cambridge University Press, http://dx.doi.org/10.1017/cbo9781139045452.017
, 'Preface', in Coble P; Lead J; Baker A; Reynolds DM; Spencer RGM (ed.), Aquatic Organic Matter Fluorescence, Cambridge University Press, pp. xiii - xiv, http://dx.doi.org/10.1017/cbo9781139045452.002
2023, 'Using Cave Formations to Investigate Ancient Wildfires', Eos, 104, http://dx.doi.org/10.1029/2023eo235011
,2023, 'Characterization of Dissolved Organic Matter from Agricultural and Livestock Effluents: Implications for Water Quality Monitoring', International Journal of Environmental Research and Public Health, 20, pp. 5121 - 5121, http://dx.doi.org/10.3390/ijerph20065121
,2023, 'A Review of Speleothems as Archives for Paleofire Proxies, With Australian Case Studies', Reviews of Geophysics, 61, http://dx.doi.org/10.1029/2022rg000790
,2022, 'A new conceptual framework for the transformation of groundwater dissolved organic matter', Nature Communications, 13, http://dx.doi.org/10.1038/s41467-022-29711-9
,2022, 'Ubiquitous karst hydrological control on speleothem oxygen isotope variability in a global study', Communications Earth and Environment, 3, http://dx.doi.org/10.1038/s43247-022-00347-3
,2022, 'Stalagmite evidence for Early Holocene multidecadal hydroclimate variability in Ethiopia', Quaternary Research (United States), 110, pp. 67 - 81, http://dx.doi.org/10.1017/qua.2022.29
,2022, 'Recharge variability in Australia's southeast alpine region derived from cave monitoring and modern stalagmite δ18O records', Quaternary Science Reviews, 295, pp. 107742 - 107742, http://dx.doi.org/10.1016/j.quascirev.2022.107742
,2022, 'Past fires and post-fire impacts reconstructed from a southwest Australian stalagmite', Geochimica et Cosmochimica Acta, 325, pp. 258 - 277, http://dx.doi.org/10.1016/j.gca.2022.03.020
,2022, 'Corrigendum to “Late Holocene climate anomaly concurrent with fire activity and ecosystem shifts in the eastern Australian Highlands” [Sci. Total Environ. 802 (2021)149542](S0048969721046167)(10.1016/j.scitotenv.2021.149542)', Science of the Total Environment, 811, pp. 152367, http://dx.doi.org/10.1016/j.scitotenv.2021.152367
,2022, 'Sulphur variations in annually layered stalagmites using benchtop micro-XRF', Spectrochimica Acta - Part B Atomic Spectroscopy, 189, http://dx.doi.org/10.1016/j.sab.2022.106366
,2022, 'WlCount: Geological lamination detection and counting using an image analysis approach', Computers and Geosciences, 160, pp. 105037 - 105037, http://dx.doi.org/10.1016/j.cageo.2022.105037
,2022, 'Late Holocene climate anomaly concurrent with fire activity and ecosystem shifts in the eastern Australian Highlands', Science of the Total Environment, 802, pp. 149542 - 149542, http://dx.doi.org/10.1016/j.scitotenv.2021.149542
,2022, 'Liquid-phase water isotope separation using graphene-oxide membranes', Carbon, 186, pp. 344 - 354, http://dx.doi.org/10.1016/j.carbon.2021.10.009
,2022, 'A nation that rebuilds its soils rebuilds itself- an engineer's perspective', Soil Security, 7, pp. 100060 - 100060, http://dx.doi.org/10.1016/j.soisec.2022.100060
,2021, 'Stalagmite evidence for Early Holocene multidecadal hydroclimate variability in Ethiopia', , http://dx.doi.org/10.31223/x5sw5d
,2021, 'The evolution of stable silicon isotopes in a coastal carbonate aquifer on Rottnest Island, Western Australia', Hydrology and Earth System Sciences, 25, pp. 3837 - 3853, http://dx.doi.org/10.5194/hess-25-3837-2021
,2021, 'RADIOCARBON PROTOCOLS and FIRST INTERCOMPARISON RESULTS from the CHRONOS 14CARBON-CYCLE FACILITY, UNIVERSITY of NEW SOUTH WALES, SYDNEY, AUSTRALIA', Radiocarbon, 63, pp. 1003 - 1023, http://dx.doi.org/10.1017/RDC.2021.23
,2021, 'The Properties of Annually Laminated Stalagmites-A Global Synthesis', Reviews of Geophysics, 59, http://dx.doi.org/10.1029/2020RG000722
,2021, 'Stalagmite Layers Reveal Hidden Climate Stories', Eos, 102, http://dx.doi.org/10.1029/2021eo156791
,2021, 'Molecular insights into the unique degradation trajectory of natural dissolved organic matter from surface to groundwater', , http://dx.doi.org/10.5194/egusphere-egu21-1845
,2021, 'Quantifying temporal variability and spatial heterogeneity in rainfall recharge thresholds in a montane karst environment', Journal of Hydrology, 594, pp. 125965 - 125965, http://dx.doi.org/10.1016/j.jhydrol.2021.125965
,2021, 'Time lapse electric resistivity tomography to portray infiltration and hydrologic flow paths from surface to cave', Journal of Hydrology, 593, pp. 125810 - 125810, http://dx.doi.org/10.1016/j.jhydrol.2020.125810
,2021, 'Characterisation of groundwater dissolved organic matter using LC[sbnd]OCD: Implications for water treatment', Water Research, 188, pp. 116422 - 116422, http://dx.doi.org/10.1016/j.watres.2020.116422
,2020, 'Changes in global groundwater organic carbon driven by climate change and urbanization', Nature Communications, 11, pp. 1279, http://dx.doi.org/10.1038/s41467-020-14946-1
,2020, 'SISALv2: A comprehensive speleothem isotope database with multiple age-depth models', Earth System Science Data, 12, pp. 2579 - 2606, http://dx.doi.org/10.5194/essd-12-2579-2020
,2020, 'The evolution of stable silicon isotopes in a coastal carbonate aquifer, Rottnest Island, Western Australia', , http://dx.doi.org/10.5194/hess-2020-429
,2020, 'Characterisation of dissolved organic matter to optimise powdered activated carbon and clarification removal efficiency', Environmental Science: Water Research and Technology, 6, pp. 2065 - 2077, http://dx.doi.org/10.1039/d0ew00149j
,2020, 'Rainfall recharge thresholds in a subtropical climate determined using a regional cave drip water monitoring network', Journal of Hydrology, 587, pp. 125001 - 125001, http://dx.doi.org/10.1016/j.jhydrol.2020.125001
,