Site Maintenance will take place from 4:00 PM on 2024-04-29 to 9:00 AM on 2024-05-01.
Please do not make any content change during this time, otherwise all the changes will be lost.

Select Publications

Conference Papers

BROWN PD; KELLY H; CLIFTON PA; MULLINS JT; SIMMONS MY; DUROSE K; BRINKMAN AW; GOLDING TD; DINAN J, 1990, 'TEM STUDIES OF CD-ZN-TE-BASED II-VI SUPERLATTICES AND EPITAXIAL LAYERS', in KATZ A; BIEFELD RM; GUNSHOR RL; MALIK RJ (eds.), LONG-WAVELENGTH SEMICONDUCTOR DEVICES, MATERIALS, AND PROCESSES, MATERIALS RESEARCH SOC, MA, BOSTON, pp. 427 - 432, presented at SYMP ON LONG-WAVELENGTH SEMICONDUCTOR DEVICES, MATERIALS, AND PROCESSES, MA, BOSTON, 26 November 1990 - 29 November 1990, https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:A1991BT83A00059&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=891bb5ab6ba270e68a29b250adbe88d1

Patents

Simmons M; Keizer J, 2022, A method for selective incorporation of dopant atoms in a semiconductive surface, Patent No. United States - 11227768

Simmons M; Hollenberg L; Rogge S; Hile S; House M; Fuechsle M; Peretz E; Hill C, 2021, Advanced processing apparatus, Patent No. Australian 2021 pat no.2015252051

Simmons M; Hollenberg L; Hill C; Peretz E; Hile S; Fuechsle M; Rogge S, 2019, A Quantum Processor, Patent No. Australia patent no. 2015252050; Switzerland patent no. 3016034; Germany patent no. 602015048909.8; Spain patent no. E15192761; France patent no. 3016034; United Kingdom patent no. 3016034; Ireland patent no. 3016034; Netherlands patent no. 3016034, https://worldwide.espacenet.com/publicationDetails/biblio?II=1&ND=3&adjacent=true&locale=en_EP&FT=D&date=20160519&CC=AU&NR=2015252050A1&KC=A1

Simmons M; Keizer J; Koch M, 2019, A method of fabricating a three dimensional electronic structure, Patent No. United States patent no. 10373914; Australia patent no. 2017203949, http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=10373914.PN.&OS=PN/10373914&RS=PN/10373914

Simmons M; Hollenberg L; Rogge S; Hile S; House M; Fuechsle M; Peretz E; Hill C, 2019, Apparatus and method for quantum processing, Patent No. 10229365, http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=10229365.PN.&OS=PN/10229365&RS=PN/10229365

Ruess F; Oberbeck L; Simmons M; Goh J; Hamilton A; Mitic M; Brenner R; Curson J; Hallam T, 2018, Fabricating nanoscale and atomic scale devices, Patent No. 1660403, https://worldwide.espacenet.com/publicationDetails/biblio?CC=EP&NR=1660403B1&KC=B1&FT=D&ND=&date=20181010&DB=EPODOC&locale=en_EP#

Simmons MY; Fuhrer A; Fuechsle M; Weber B; Reusch T; Pok W; Ruess F, 2017, FABRICATION OF ATOMIC SCALE DEVICES, Belgium, Patent No. 2250124, https://worldwide.espacenet.com/publicationDetails/biblio?CC=EP&NR=2250124B1&KC=B1&FT=D#

Simmons MY; Fuhrer A; Fuechsle M; Weber B; Reusch T; Pok W; Ruess F, 2017, Fabrication of Atomic Scale Devices, France, Patent No. 2250124, https://worldwide.espacenet.com/publicationDetails/biblio?CC=EP&NR=2250124B1&KC=B1&FT=D#

Simmons MY; Fuhrer A; Fuechsle M; Weber B; Reusch T; Pok W; Ruess F, 2017, Fabrication of Atomic Scale Devices, Netherlands, Patent No. 2250124, https://worldwide.espacenet.com/publicationDetails/biblio?CC=EP&NR=2250124B1&KC=B1&FT=D#

Simmons MY; Fuhrer A; Fuechsle M; Weber B; Reusch T; Pok W; Ruess F, 2017, Fabrication of Atomic Scale Devices, United Kingdom, Patent No. 2250124, https://worldwide.espacenet.com/publicationDetails/biblio?CC=EP&NR=2250124B1&KC=B1&FT=D#

Simmons MY, 2011, Fabricating nanoscale and atomic scale devices, Japan, Patent No. 4855255, Patent Agent:Qucor Pty Ltd

Clark RG; Dzurak A; O Brien J; Schofield SR; Simmons MY, 2002, Single molecule array on silicon substrate for quantum computer, Patent No.

Clark RG; Curson NJ; Dzurak A; O Brien J; Schofield S; Simmons MY, 2000, A process for the fabrication of a quantum computer, Patent No.

Preprints

Monir S; Osika EN; Gorman SK; Thorvaldson I; Hsueh Y-L; Macha P; Kranz L; Reiner J; Simmons MY; Rahman R, 2023, Impact of measurement backaction on nuclear spin qubits in silicon, , http://dx.doi.org/10.48550/arxiv.2310.12656

Munia MM; Monir S; Osika EN; Simmons MY; Rahman R, 2023, Superexchange coupling of donor qubits in silicon, , http://dx.doi.org/10.48550/arxiv.2309.00276

Donnelly MB; Keizer JG; Chung Y; Simmons MY, 2022, 3-Dimensional Tuning of an Atomically Defined Silicon Tunnel Junction, , http://dx.doi.org/10.48550/arxiv.2211.02180

Sarkar A; Hochstetter J; Kha A; Hu X; Simmons MY; Rahman R; Culcer D, 2022, Optimisation of electrically-driven multi-donor quantum dot qubits, , http://dx.doi.org/10.48550/arxiv.2203.16553

Hogg MR; Pakkiam P; Gorman SK; Timofeev AV; Chung Y; Gulati GK; House MG; Simmons MY, 2022, Single-shot readout of multiple donor electron spins with a gate-based sensor, , http://dx.doi.org/10.48550/arxiv.2203.09248

Voisin B; Ng KSH; Salfi J; Usman M; Wong JC; Tankasala A; Johnson BC; McCallum JC; Hutin L; Bertrand B; Vinet M; Valanoor N; Simmons MY; Rahman R; Hollenberg LCL; Rogge S, 2021, Valley population of donor states in highly strained silicon, , http://dx.doi.org/10.48550/arxiv.2109.08540

Voisin B; Bocquel J; Tankasala A; Usman M; Salfi J; Rahman R; Simmons MY; Hollenberg LCL; Rogge S, 2021, Valley interference and spin exchange at the atomic scale in silicon, , http://dx.doi.org/10.48550/arxiv.2105.10931

Krauth FN; Gorman SK; He Y; Jones MT; Macha P; Kocsis S; Chua C; Voisin B; Rogge S; Rahman R; Chung Y; Simmons MY, 2021, Flopping-mode electric dipole spin resonance in phosphorus donor qubits in silicon, , http://dx.doi.org/10.48550/arxiv.2105.02906

Keith D; Gorman SK; Kranz L; He Y; Keizer JG; Broome MA; Simmons MY, 2018, Benchmarking high fidelity single-shot readout of semiconductor qubits, , http://dx.doi.org/10.48550/arxiv.1811.03630

Kobayashi T; Salfi J; van der Heijden J; Chua C; House MG; Culcer D; Hutchison WD; Johnson BC; McCallum JC; Riemann H; Abrosimov NV; Becker P; Pohl H-J; Simmons MY; Rogge S, 2018, Engineering long spin coherence times of spin-orbit systems, , http://dx.doi.org/10.48550/arxiv.1809.10859

Pakkiam P; Timofeev AV; House MG; Hogg MR; Kobayashi T; Koch M; Rogge S; Simmons MY, 2018, Single-shot single-gate RF spin readout in silicon, , http://dx.doi.org/10.48550/arxiv.1809.01802

Hile SJ; Fricke L; House MG; Peretz E; Chen CY; Wang Y; Broome M; Gorman SK; Keizer JG; Rahman R; Simmons MY, 2018, Addressable electron spin resonance using donors and donor molecules in silicon, , http://dx.doi.org/10.48550/arxiv.1807.10290

Broome MA; Watson TF; Keith D; Gorman SK; House MG; Keizer JG; Hile SJ; Baker W; Simmons MY, 2018, High Fidelity Single-Shot Singlet-Triplet Readout of Precision Placed Donors in Silicon, , http://dx.doi.org/10.48550/arxiv.1807.10285

Gorman SK; Broome MA; House MG; Hile SJ; Keizer JG; Keith D; Watson TF; Baker WJ; Simmons MY, 2018, Singlet-triplet minus mixing and relaxation lifetimes in a double donor dot, , http://dx.doi.org/10.48550/arxiv.1807.10289

Broome MA; Gorman SK; House MG; Hile SJ; Keizer JG; Keith D; Hill CD; Watson TF; Baker WJ; Hollenberg LCL; Simmons MY, 2018, Two-Electron Spin Correlations in Precision Placed Donors in Silicon, , http://dx.doi.org/10.48550/arxiv.1807.10295

Gorman SK; He Y; House MG; Keizer JG; Keith D; Fricke L; Hile SJ; Broome MA; Simmons MY, 2017, Tunneling statistics for analysis of spin-readout fidelity, , http://dx.doi.org/10.48550/arxiv.1710.02243

Salfi J; Voisin B; Tankasala A; Bocquel J; Usman M; Simmons MY; Hollenberg LCL; Rahman R; Rogge S, 2017, Valley filtering and spatial maps of coupling between silicon donors and quantum dots, , http://dx.doi.org/10.48550/arxiv.1706.09261

Tankasala A; Salfi J; Bocquel J; Voisin B; Usman M; Klimeck G; Simmons MY; Hollenberg LCL; Rogge S; Rahman R, 2017, Two-electron states of a group V donor in silicon from atomistic full configuration interaction, , http://dx.doi.org/10.48550/arxiv.1703.04175

van der Heijden J; Kobayashi T; House MG; Salfi J; Barraud S; Lavieville R; Simmons MY; Rogge S, 2017, Spin-orbit dynamics of single acceptor atoms in silicon, , http://dx.doi.org/10.48550/arxiv.1703.03538

Tettamanzi GC; Hile SJ; House MG; Fuechsle M; Rogge S; Simmons MY, 2017, Probing the Quantum States of a Single Atom Transistor at Microwave Frequencies, , http://dx.doi.org/10.48550/arxiv.1702.08569

Broome MA; Gorman SK; Keizer JG; Watson TF; Hile SJ; Baker WJ; Simmons MY, 2016, Mapping the Chemical Potential Landscape of a Triple Quantum Dot, , http://dx.doi.org/10.48550/arxiv.1609.03381

Wang Y; Chen C-Y; Klimeck G; Simmons MY; Rahman R, 2016, Characterizing Si:P quantum dot qubits with spin resonance techniques, , http://dx.doi.org/10.48550/arxiv.1607.01086

Gorman SK; Broome MA; Keizer JG; Watson TF; Hile SJ; Baker WJ; Simmons MY, 2016, Extracting inter-dot tunnel couplings between few donor quantum dots in silicon, , http://dx.doi.org/10.48550/arxiv.1606.00851

Li T; Yeoh LA; Srinivasan A; Klochan O; Ritchie DA; Simmons MY; Sushkov OP; Hamilton AR, 2016, Manifestation of a non-abelian gauge field in a p-type semiconductor system, , http://dx.doi.org/10.48550/arxiv.1604.06149

Kobayashi T; van der Heijden J; House MG; Hile SJ; Asshoff P; Gonzalez-Zalba MF; Vinet M; Simmons MY; Rogge S, 2016, Resonant tunneling spectroscopy of valley eigenstates on a hybrid double quantum dot, , http://dx.doi.org/10.48550/arxiv.1604.04020

Usman M; Bocquel J; Salfi J; Voisin B; Tankasala A; Rahman R; Simmons MY; Rogge S; Hollenberg LLC, 2016, Spatial Metrology of Dopants in Silicon with Exact Lattice Site Precision, , http://dx.doi.org/10.48550/arxiv.1601.02326

Gorman SK; Broome MA; Baker WJ; Simmons MY, 2015, The impact of nuclear spin dynamics on electron transport through donors, , http://dx.doi.org/10.48550/arxiv.1509.05407

Hile SJ; House MG; Peretz E; Verduijn J; Widmann D; Kobayashi T; Rogge S; Simmons MY, 2015, Radio frequency reflectometry and charge sensing of a precision placed donor in silicon, , http://dx.doi.org/10.48550/arxiv.1509.03315

Wang YE; Tankasala A; Hollenberg LCL; Klimeck G; Simmons MY; Rahman R, 2015, Engineering inter-qubit exchange coupling between donor bound electrons in silicon, , http://dx.doi.org/10.48550/arxiv.1507.08009

Salfi J; Mol JA; Rahman R; Klimeck G; Simmons MY; Hollenberg LCL; Rogge S, 2015, Quantum Simulation of the Hubbard Model with Dopant Atoms in Silicon, , http://dx.doi.org/10.48550/arxiv.1507.06125

Usman M; Hill CD; Rahman R; Klimeck G; Simmons MY; Rogge S; Hollenberg LCL, 2015, Strain and Electric Field Control of Hyperfine Interactions for Donor Spin Qubits in Silicon, , http://dx.doi.org/10.48550/arxiv.1504.06370

Scappucci G; Klesse WM; Yeoh LA; Carter DJ; Warschkow O; Marks NA; Jaeger DL; Capellini G; Simmons MY; Hamilton AR, 2015, Bottom-up assembly of metallic germanium, , http://dx.doi.org/10.48550/arxiv.1503.05994

Mol JA; Salfi J; Rahman R; Hsueh Y; Miwa JA; Klimeck G; Simmons MY; Rogge S, 2015, Interface-induced heavy-hole/light-hole splitting of acceptors in silicon, , http://dx.doi.org/10.48550/arxiv.1501.05669

Hsueh Y-L; Büch H; Tan Y; Wang Y; Hollenberg LCL; Klimeck G; Simmons MY; Rahman R, 2015, Spin-lattice relaxation times of single donors and donor clusters in silicon, , http://dx.doi.org/10.48550/arxiv.1501.04089

Shamim S; Mahapatra S; Scappucci G; Klesse WM; Simmons MY; Ghosh A, 2014, Spontaneous breaking of time reversal symmetry in strongly interacting two dimensional electron layers in silicon and germanium, , http://dx.doi.org/10.48550/arxiv.1404.0625

House MG; Peretz E; Keizer JG; Hile SJ; Simmons MY, 2014, Single-charge detection by an atomic precision tunnel junction, , http://dx.doi.org/10.48550/arxiv.1403.5320


Back to profile page