Select Publications
Journal articles
2012, 'The cellular and molecular basis for malaria parasite invasion of the human red blood cell', Journal of Cell Biology, 198, pp. 961 - 971, http://dx.doi.org/10.1083/jcb.201206112
,2012, 'Systematic analysis of FKBP inducible degradation domain tagging strategies for the human malaria parasite Plasmodium falciparum', PLoS ONE, 7, http://dx.doi.org/10.1371/journal.pone.0040981
,2012, 'Editorial - Molecular Approaches to Malaria 2012 (MAM 2012)', International Journal for Parasitology, 42, pp. 517, http://dx.doi.org/10.1016/j.ijpara.2012.05.001
,2012, 'Malaria parasite colonisation of the mosquito midgut - Placing the Plasmodium ookinete centre stage', International Journal for Parasitology, 42, pp. 519 - 527, http://dx.doi.org/10.1016/j.ijpara.2012.02.004
,2012, 'Holding back the microfilament - Structural insights into actin and the actin-monomer-binding proteins of apicomplexan parasites', IUBMB Life, 64, pp. 370 - 377, http://dx.doi.org/10.1002/iub.1014
,2012, 'The Dendritic Cell Receptor Clec9A Binds Damaged Cells via Exposed Actin Filaments', Immunity, 36, pp. 646 - 657, http://dx.doi.org/10.1016/j.immuni.2012.03.009
,2012, 'Biosynthesis, localization, and macromolecular arrangement of the Plasmodium falciparum translocon of exported proteins (PTEX)', Journal of Biological Chemistry, 287, pp. 7871 - 7884, http://dx.doi.org/10.1074/jbc.M111.328591
,2012, 'A GFP-Actin reporter line to explore microfilament dynamics across the malaria parasite lifecycle', Molecular and Biochemical Parasitology, 182, pp. 93 - 96, http://dx.doi.org/10.1016/j.molbiopara.2011.11.008
,2012, 'PfSET10, a Plasmodium falciparum Methyltransferase, Maintains the Active var Gene in a Poised State during Parasite Division', Cell Host and Microbe, 11, pp. 7 - 18, http://dx.doi.org/10.1016/j.chom.2011.11.011
,2012, 'Co-sedimentation Assay for the Detection of Direct Binding to F-actin', BIO-PROTOCOL, 2, http://dx.doi.org/10.21769/bioprotoc.270
,2012, 'Spatial localisation of actin filaments across developmental stages of the malaria parasite', PLoS ONE, 7, pp. Article number e32188, http://dx.doi.org/10.1371/journal.pone.0032188
,2011, 'An egf-like protein forms a complex with pfrh5 and is required for invasion of human erythrocytes by plasmodium falciparum', PLoS Pathogens, 7, http://dx.doi.org/10.1371/journal.ppat.1002199
,2011, 'Cytoskeletal and membrane remodelling during malaria parasite invasion of the human erythrocyte', British Journal of Haematology, 154, pp. 680 - 689, http://dx.doi.org/10.1111/j.1365-2141.2011.08766.x
,2011, 'Revealing a parasite's invasive trick', Science, 333, pp. 410 - 411, http://dx.doi.org/10.1126/science.1209875
,2011, 'Minimal requirements for actin filament disassembly revealed by structural analysis of malaria parasite actin-depolymerizing factor 1', Proceedings of the National Academy of Sciences of the United States of America, 108, pp. 9869 - 9874, http://dx.doi.org/10.1073/pnas.1018927108
,2011, 'Plasmodium falciparum merozoite invasion is inhibited by antibodies that target the PfRH2a and b binding domains', PLoS Pathogens, 7, http://dx.doi.org/10.1371/journal.ppat.1002075
,2011, 'Tracking glideosome-associated protein 50 reveals the development and organization of the inner membrane complex of Plasmodium falciparum', Eukaryotic Cell, 10, pp. 556 - 564, http://dx.doi.org/10.1128/EC.00244-10
,2011, 'Super-resolution dissection of coordinated events during malaria parasite invasion of the human erythrocyte', Cell Host and Microbe, 9, pp. 9 - 20, http://dx.doi.org/10.1016/j.chom.2010.12.003
,2011, 'A Research Agenda for Malaria Eradication: Basic Science and Enabling Technologies', PLOS MEDICINE, 8, http://dx.doi.org/10.1371/journal.pmed.1000399
,2010, 'Isolation of viable Plasmodium falciparum merozoites to define erythrocyte invasion events and advance vaccine and drug development', Proceedings of the National Academy of Sciences of the United States of America, 107, pp. 14378 - 14383, http://dx.doi.org/10.1073/pnas.1009198107
,2010, 'Interaction between Plasmodium falciparum apical membrane antigen 1 and the rhoptry neck protein complex defines a key step in the erythrocyte invasion process of malaria parasites', Journal of Biological Chemistry, 285, pp. 14815 - 14822, http://dx.doi.org/10.1074/jbc.M109.080770
,2010, 'Stepwise dissection of Plasmodium falciparum merozoite invasion of the human erythrocyte', Malaria Journal, 9, http://dx.doi.org/10.1186/1475-2875-9-s2-o25
,2010, 'Stepwise dissection of Plasmodium falciparum merozoite invasion of the human erythrocyte', Malaria Journal, 9, http://dx.doi.org/10.1186/1475-2875-9-s2-p42
,2009, 'Molecular genetics and comparative genomics reveal RNAi is not functional in malaria parasites', Nucleic Acids Research, 37, pp. 3788 - 3798, http://dx.doi.org/10.1093/nar/gkp239
,2009, 'Polymorphisms in erythrocyte binding antigens 140 and 181 affect function and binding but not receptor specificity in Plasmodium falciparum', Infection and Immunity, 77, pp. 1689 - 1699, http://dx.doi.org/10.1128/IAI.01331-08
,2009, 'Reticulocyte-binding protein homologue 5 - An essential adhesin involved in invasion of human erythrocytes by Plasmodium falciparum', International Journal for Parasitology, 39, pp. 371 - 380, http://dx.doi.org/10.1016/j.ijpara.2008.10.006
,2008, 'Host-cell invasion by malaria parasites: insights from Plasmodium and Toxoplasma', Trends in Parasitology, 24, pp. 557 - 563, http://dx.doi.org/10.1016/j.pt.2008.08.006
,2008, 'A Malaria Parasite Formin Regulates Actin Polymerization and Localizes to the Parasite-Erythrocyte Moving Junction during Invasion', Cell Host and Microbe, 3, pp. 188 - 198, http://dx.doi.org/10.1016/j.chom.2008.02.006
,2006, 'Regulation of apicomplexan actin-based motility', Nature Reviews Microbiology, 4, pp. 621 - 628, http://dx.doi.org/10.1038/nrmicro1465
,2006, 'A conserved molecular motor drives cell invasion and gliding motility across malaria life cycle stages and other apicomplexan parasites', Journal of Biological Chemistry, 281, pp. 5197 - 5208, http://dx.doi.org/10.1074/jbc.M509807200
,2005, 'Invasion by P. falciparum merozoites suggests a hierarchy of molecular interactions', PLoS Pathogens, 1, pp. 0299 - 0309, http://dx.doi.org/10.1371/journal.ppat.0010037
,2005, 'Signal-mediated export of proteins from the malaria parasite to the host erythrocyte', Journal of Cell Biology, 171, pp. 587 - 592, http://dx.doi.org/10.1083/jcb.200508051
,2005, 'A comparison of match-only algorithms for the analysis of Plasmodium falciparum oligonucleotide arrays', International Journal for Parasitology, 35, pp. 523 - 531, http://dx.doi.org/10.1016/j.ijpara.2005.02.010
,2004, 'Micrococcus luteus - Survival in amber', Microbial Ecology, 48, pp. 120 - 127, http://dx.doi.org/10.1007/s00248-003-2016-5
,2003, 'Erythrocyte invasion phenotypes of Plasmodium falciparum in the Gambia', Infection and Immunity, 71, pp. 1856 - 1863, http://dx.doi.org/10.1128/IAI.71.4.1856-1863.2003
,2003, 'Evidence for diversifying selection on erythrocyte-binding antigens of Plasmodium falciparum and P. vivax', Genetics, 163, pp. 1327 - 1336
,2002, 'In the blood - The remarkable ancestry of Plasmodium falciparum', Trends in Parasitology, 18, pp. 351 - 355, http://dx.doi.org/10.1016/S1471-4922(02)02330-9
,2002, 'Natural selection on the erythrocyte surface', Molecular Biology and Evolution, 19, pp. 223 - 229, http://dx.doi.org/10.1093/oxfordjournals.molbev.a004075
,2001, 'Population genetic analysis of the Plasmodium falciparum erythrocyte binding antigen-175 (eba-175) gene', Molecular and Biochemical Parasitology, 114, pp. 63 - 70, http://dx.doi.org/10.1016/S0166-6851(01)00240-7
,Conference Papers
2018, 'A CMOS-based diagnostic system for detection of artemisinin-resistant malaria', in 22nd International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2018, pp. 871 - 873
,Working Papers
2023, A novel computational pipeline for var gene expression augments the discovery of changes in the Plasmodium falciparum transcriptome during transition from in vivo to short-term in vitro culture, http://dx.doi.org10.7554/eLife.87726.1
,Preprints
2023, A novel computational pipeline forvargene expression augments the discovery of changes in thePlasmodium falciparumtranscriptome during transition fromin vivoto short-termin vitroculture, http://dx.doi.org/10.1101/2023.03.21.533599
,2022, A fast-killing tyrosine amide ((S)-SW228703) with blood and liver-stage antimalarial activity associated with the Cyclic Amine Resistance Locus (PfCARL), http://dx.doi.org/10.1101/2022.10.16.512381
,2022, Mechanism of small molecule inhibition of Plasmodium falciparum myosin A informs antimalarial drug design, http://dx.doi.org/10.1101/2022.09.09.507123
,2022, Electricity-free nucleic acid extraction method from dried blood spots on filter paper for point-of-care diagnostics, http://dx.doi.org/10.1101/2022.07.28.501845
,2021, 4D live-cell imaging of microgametogenesis in the human malaria parasite Plasmodium falciparum, http://dx.doi.org/10.1101/2021.07.28.454129
,2021, Plasmodium falciparumprotein Pfs16 is a target for transmission-blocking antimalarial drug development, http://dx.doi.org/10.1101/2021.06.14.448287
,2021, Preclinical characterization and target validation of the antimalarial pantothenamide MMV693183, http://dx.doi.org/10.1101/2021.05.12.443866
,2021, Automated detection and staging of malaria parasites from cytological smears using convolutional neural networks, http://dx.doi.org/10.1101/2021.01.26.21250284
,2021, Prioritization of antimicrobial targets by CRISPR-based oligo recombineering, http://dx.doi.org/10.1101/2021.02.04.429737
,