Select Publications
Book Chapters
2018, 'Genome editing of erythroid cell culture model systems', in Lloyd JA (ed.), Erythropoiesis methods and protocols, Springer, pp. 245 - 257, http://dx.doi.org/10.1007/978-1-4939-7428-3_15
,2012, 'Homo‑ and Heterodimerization in Transcriptional Regulation (Ch. 7)', in Matthews JM (ed.), Protein Dimerization and Oligomerization in Biology, Springer Biomedical Sciences, pp. 105 - 121, http://www.landesbioscience.com/books/special/id/1515/?nocache=346109729
,2007, 'Zinc‐finger Genes', in , Wiley, http://dx.doi.org/10.1002/9780470015902.a0005047.pub2
,2004, 'The transcriptome', in Mammalian Genomics, pp. 118 - 151
,2002, 'Zinc Fingers', in , Wiley, http://dx.doi.org/10.1002/0471203076.emm0414
,Journal articles
2024, 'Hydroxyurea reduces the levels of the fetal globin gene repressors ZBTB7A/LRF and BCL11A in erythroid cells in vitro', Journal of Sickle Cell Disease, 1, http://dx.doi.org/10.1093/jscdis/yoae008
,2024, 'Base editing of key residues in the BCL11A-XL-specific zinc finger domains derepresses fetal globin expression', Molecular Therapy, 32, pp. 663 - 677, http://dx.doi.org/10.1016/j.ymthe.2024.01.023
,2023, 'miR-365-3p mediates BCL11A and SOX6 erythroid-specific coregulation: A new player in HbF activation', Molecular Therapy Nucleic Acids, 34, http://dx.doi.org/10.1016/j.omtn.2023.09.002
,2023, 'Author Correction: HIC2 controls developmental hemoglobin switching by repressing BCL11A transcription (Nature Genetics, (2022), 54, 9, (1417-1426), 10.1038/s41588-022-01152-6)', Nature Genetics, 55, pp. 1608, http://dx.doi.org/10.1038/s41588-023-01488-7
,2023, 'Potent and uniform fetal hemoglobin induction via base editing', Nature Genetics, 55, pp. 1210 - 1220, http://dx.doi.org/10.1038/s41588-023-01434-7
,2022, 'Effective therapies for sickle cell disease: are we there yet?', Trends in Genetics, 38, pp. 1284 - 1298, http://dx.doi.org/10.1016/j.tig.2022.07.003
,2022, 'Protocols for protein-DNA binding analysis of a zinc finger transcription factor bound to its cognate promoter', STAR protocols, 3, pp. 101598, http://dx.doi.org/10.1016/j.xpro.2022.101598
,2022, 'HIC2 controls developmental hemoglobin switching by repressing BCL11A transcription', Nature Genetics, 54, pp. 1417 - 1426, http://dx.doi.org/10.1038/s41588-022-01152-6
,2022, 'Disrupting the adult globin promoter alleviates promoter competition and reactivates fetal globin gene expression', Blood, 139, pp. 2107 - 2118, http://dx.doi.org/10.1182/blood.2021014205
,2022, 'Identification of novel HPFH-like mutations by CRISPR base editing that elevate the expression of fetal hemoglobin', eLife, 11, http://dx.doi.org/10.7554/ELIFE.65421
,2021, 'Structural basis for human ZBTB7A action at the fetal globin promoter', Cell Reports, 36, http://dx.doi.org/10.1016/j.celrep.2021.109759
,2021, 'Activation of γ-globin gene expression by GATA1 and NF-Y in hereditary persistence of fetal hemoglobin', Nature Genetics, 53, pp. 1177 - 1186, http://dx.doi.org/10.1038/s41588-021-00904-0
,2021, 'ZNF410 Uniquely Activates the NuRD Component CHD4 to Silence Fetal Hemoglobin Expression', Molecular Cell, 81, pp. 239 - 254.e8, http://dx.doi.org/10.1016/j.molcel.2020.11.006
,2020, 'Eosinophil function in adipose tissue is regulated by Krüppel-like factor 3 (KLF3)', Nature Communications, 11, http://dx.doi.org/10.1038/s41467-020-16758-9
,2020, 'Methylation of a CGATA element inhibits binding and regulation by GATA-1', Nature Communications, 11, http://dx.doi.org/10.1038/s41467-020-16388-1
,2020, 'ZNF410 Uniquely Activates the NuRD Component CHD4 to Silence Fetal Hemoglobin Expression', BLOOD, 136, http://dx.doi.org/10.1182/blood-2020-137564
,2020, 'Global citizen deliberation on genome editing', Science, 369, pp. 1435 - 1437, http://dx.doi.org/10.1126/SCIENCE.ABB5931
,2020, 'Krüppel-like factor 3 (klf3) suppresses nf-b-driven inflammation in mice', Journal of Biological Chemistry, 295, pp. 608 - 6091, http://dx.doi.org/10.1074/jbc.RA120.013114
,2019, 'FUNCTIONALLY DISTINCT UTILIZATION OF CIS-REGULATORY ELEMENTS IN HEREDITARY PERSISTENCE OF FETAL HEMOGLOBIN', EXPERIMENTAL HEMATOLOGY, 76, pp. S64 - S64, https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000844545400120&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=891bb5ab6ba270e68a29b250adbe88d1
,2019, 'Hit and Run Transcriptional Repressors Are Difficult to Catch in the Act', BioEssays, 41, pp. e1900041, http://dx.doi.org/10.1002/bies.201900041
,2019, 'A natural regulatory mutation in the proximal promoter elevates fetal globin expression by creating a de novo GATA1 site', Blood, 133, pp. 852 - 856, http://dx.doi.org/10.1182/blood-2018-07-863951
,2018, 'Partial reprogramming of heterologous cells by defined factors to generate megakaryocyte lineage-restricted biomolecules', Biotechnology Reports, 20, http://dx.doi.org/10.1016/j.btre.2018.e00285
,2018, 'Wake-up Sleepy Gene: Reactivating Fetal Globin for β-Hemoglobinopathies', Trends in Genetics, 34, pp. 927 - 940, http://dx.doi.org/10.1016/j.tig.2018.09.004
,2018, 'Charting a noncoding gene for g-globin activation', Blood, 132, pp. 1865 - 1867, http://dx.doi.org/10.1182/blood-2018-09-873620
,2018, 'Defining Eosinophil Function in Adiposity and Weight Loss', BioEssays, 40, http://dx.doi.org/10.1002/bies.201800098
,2018, 'Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding', Nature Genetics, 50, pp. 498 - 503, http://dx.doi.org/10.1038/s41588-018-0085-0
,2017, 'Direct competition between DNA binding factors highlights the role of Krüppel-like Factor 1 in the erythroid/megakaryocyte switch', Scientific Reports, 7, pp. 3137, http://dx.doi.org/10.1038/s41598-017-03289-5
,2017, 'Key challenges in bringing CRISPR-mediated somatic cell therapy into the clinic', Genome Medicine, 9, http://dx.doi.org/10.1186/s13073-017-0475-4
,2017, 'KLF1 drives the expression of fetal hemoglobin in British HPFH', Blood, 130, pp. 803 - 807, http://dx.doi.org/10.1182/blood-2017-02-767400
,2017, 'Krüppel-like factors compete for promoters and enhancers to fine-tune transcription', Nucleic Acids Research, 45, pp. 6572 - 6588, http://dx.doi.org/10.1093/nar/gkx441
,2017, 'The regulation of human globin promoters by CCAAT box elements and the recruitment of NF-Y', Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 1860, pp. 525 - 536, http://dx.doi.org/10.1016/j.bbagrm.2016.10.002
,2017, 'KLF1 directly activates expression of the novel fetal globin repressor ZBTB7A/LRF in erythroid cells', Blood Advances, 1, pp. 685 - 692, http://dx.doi.org/10.1182/bloodadvances.2016002303
,2016, 'Krüppel-like factor 3 (KLF3/BKLF) is required for widespread repression of the inflammatory modulator galectin-3 (Lgals3)', Journal of Biological Chemistry, 291, pp. 16048 - 16058, http://dx.doi.org/10.1074/jbc.M116.715748
,2016, 'Kruppeling erythropoiesis: an unexpected broad spectrum of human red blood cell disorders due to KLF1 variants', BLOOD, 127, pp. 1856 - 1862, http://dx.doi.org/10.1182/blood-2016-01-694331
,2016, 'Homeodomain-Interacting Protein Kinase (HPK-1) regulates stress responses and ageing in C. elegans', Scientific Reports, 6, pp. 19582, http://dx.doi.org/10.1038/srep19582
,2016, 'Gene regulation: Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin', Science, 351, pp. 285 - 289, http://dx.doi.org/10.1126/science.aad3312
,2015, 'Directing an artificial zinc finger protein to new targets by fusion to a non-DNA-binding domain', Nucleic Acids Research, 44, pp. 3118 - 3130, http://dx.doi.org/10.1093/nar/gkv1380
,2015, 'Editing the genome to introduce a beneficial naturally occurring mutation associated with increased fetal globin', Nature Communications, 6, pp. 7085, http://dx.doi.org/10.1038/ncomms8085
,2015, 'Phosphorylation of krüppel-like factor 3 (KLF3/BKLF) and C-terminal binding protein 2 (CtBP2) by homeodomaininteracting protein kinase 2 (HIPK2) modulates KLF3 DNA binding and activity', Journal of Biological Chemistry, 290, pp. 8591 - 8605, http://dx.doi.org/10.1074/jbc.M115.638338
,2014, 'The transcriptional repressor CTBP-1 functions in the nervous system of Caenorhabditis elegans to regulate lifespan', Experimental Gerontology, 60, pp. 153 - 165, http://dx.doi.org/10.1016/j.exger.2014.09.022
,2014, 'Multi-species, multi-transcription factor binding highlights conserved control of tissue-specific biological pathways', eLife, 3, pp. 1 - 29, http://dx.doi.org/10.7554/eLife.02626
,2014, 'The identification and structure of an N-terminal PR domain show that FOG1 is a member of the PRDM family of proteins', PLoS ONE, 9, pp. e106011, http://dx.doi.org/10.1371/journal.pone.0106011
,2014, 'SUMV-1 antagonizes the activity of synthetic multivulva genes in Caenorhabditis elegans', Developmental Biology, 392, pp. 266 - 282, http://dx.doi.org/10.1016/j.ydbio.2014.05.018
,2014, 'Differential regulation of the α-globin locus by Krüppel-like factor 3 in erythroid and non-erythroid cells', BMC Molecular Biology, 15, pp. 8, http://dx.doi.org/10.1186/1471-2199-15-8
,2014, 'Repression of chimeric transcripts emanating from endogenous retrotransposons by a sequence-specific transcription factor', Genome Biology, 15, pp. 3252, http://dx.doi.org/10.1186/gb-2014-15-4-r58
,